Skip to main content

Advertisement

Log in

Response of microbial communities to pesticide residues in soil restored with Azolla imbricata

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Under conditions of Azolla imbricata restoration, the high-throughput sequencing technology was employed to determine change trends of microbial community structures in the soil that had undergone long-term application of pesticides. The relationship between the content of pesticide residues in the soil and the microbial community structure was analyzed. The results indicated that the microbial diversity was strongly negatively correlated with the contents of pesticide residues in the soil. At a suitable dosage of 5 kg fresh A. imbricata per square meter of soil area, the soil microbial diversity increased by 12.0%, and the contents of pesticide residues decreased by 26.8−72.1%. Sphingobacterium, Sphingopyxis, Thermincola, Sphingobium, Acaryochloris, Megasphaera, Ralstonia, Pseudobutyrivibrio, Desulfitobacterium, Nostoc, Oscillochloris, and Aciditerrimonas may play major roles in the degradation of pesticide residues. Thauera, Levilinea, Geothrix, Thiobacillus, Thioalkalispira, Desulfobulbus, Polycyclovorans, Fluviicola, Deferrisoma, Erysipelothrix, Desulfovibrio, Cytophaga, Vogesella, Zoogloea, Azovibrio, Halomonas, Paludibacter, Crocinitomix, Haliscomenobacter, Hirschia, Silanimonas, Alkalibacter, Woodsholea, Peredibacter, Leptolinea, Chitinivorax, Candidatus_Lumbricincola, Anaerovorax, Propionivibrio, Parasegetibacter, Byssovorax, Runella, Leptospira, and Nitrosomonas may be indicators to evaluate the contents of pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brock AL, Kästner M, Trapp S (2017) Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues. SAR QSAR Environ Res 341:1–22

    Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134

    Article  CAS  Google Scholar 

  • Chen L, Zhang JB, Zhao BZ, Yan P, Zhou GX, Xin XL (2014) Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil. J Soils Sediments 14:1829–1840

    Article  CAS  Google Scholar 

  • Daebeler A, Bodelier PL, Yan Z, Hefting MM, Jia Z, Laanbroek HJ (2014) Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J 8:2397–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Morais MR, Zanardi OZ, Rugno GR, Yamamoto PT (2016) Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae). Ecotoxicology 25:1011–1020

    Article  PubMed  Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624

    Article  CAS  PubMed  Google Scholar 

  • Han XZ, Zhu LQ, Yang MF, Yu Q, Bian XM (2012) Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity. J Agro-Environ Sci 31:2192–2199

    CAS  Google Scholar 

  • Helbling DE (2015) Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. Curr Opin Biotechnol 33:142–148

    Article  CAS  PubMed  Google Scholar 

  • Huang ZQ, Wan XH, He ZM, Yu ZP, Wang MH, Hu ZH, Yang YS (2013) Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biol Biochem 62:68–75

    Article  CAS  Google Scholar 

  • Liu CH, Liu Y, Fan C, Kuang SZ (2013) The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple. J Soil Sci Plant Nut 13:433–444

    Google Scholar 

  • Lu L, Jia Z (2013) Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Lu RK (2000) Soil and agricultural chemistry analysis. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Lu XM, Lu PZ, Lu PL, Huang MS (2013) Correlations between physiological responses of four aquatic plant species and river water quality. Chem Ecol 30:295–307

    Article  Google Scholar 

  • Lu XM, Lu PZ, Yang K (2017) Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil. Appl Microbiol Biotechnol 101:3849–3859

    Article  CAS  PubMed  Google Scholar 

  • Marusenko Y, Garcia-Pichel F, Hall SJ (2015) Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils. FEMS Microbiol Ecol 91:1–11

    Article  PubMed  Google Scholar 

  • Ochoa-Hueso R, Delgado-Baquerizo M, Gallardo A, Bowker MA, Maestre FT (2016) Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands. Plant Soil 399:271–282

    Article  CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Kaur J, Singh K (2014) Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40:146–154

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh K (2016) Microbial degradation of herbicides. Crit Rev Microbiol 42:245–261

    Article  CAS  PubMed  Google Scholar 

  • Sun RB, Zhang XX, Guo XS, Wang DZ, Chu HY (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18

    Article  CAS  Google Scholar 

  • Takashi I, Tomomi O, Eiki W (2014) Water-based extraction and liquid chromatography–tandem mass spectrometry analysis of neonicotinoid insecticides and their metabolites in green pepper/tomato samples. J Agric Food Chem 62:2790–2796

    Article  Google Scholar 

  • Vandermaesen J, Horemans B, Bers K, Vandermeeren P, Herrmann S, Sekhar A, Seuntjens P, Springael D (2016) Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 100:7361–7376

    Article  CAS  PubMed  Google Scholar 

  • Van Hoesel W, Tiefenbacher A, König N, Dorn VM, Hagenguth JF, Prah U, Widhalm T, Wiklicky V, Koller R, Bonkowski M, Lagerlöf J, Ratzenböck A, Zaller JG (2017) Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition. Front Plant Sci 8:215–227

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Qu LY, Ma KM, Yuan X (2013a) Soil microbial properties under different vegetation types on Mountain Han. Sci China Life Sci 56:561–570

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Lin Y, Chen SL, Hu FN (2013b) Experiment and demonstration summary of the dwarfing, fast-growing and high-yield cultivation technology for mandarin orange. Zhejiang Citrus 4:22–25

    CAS  Google Scholar 

  • Xu J, Feng Y, Wang Y, Wang J, He X, Lin X (2013) Soil microbial mechanisms of Stevia rebaudiana (Bertoni) residue returning increasing crop yield and quality. Biol Fert Soils 49:839–846

    Article  Google Scholar 

  • Yadav M, Shukla AK, Srivastva N, Upadhyay SN, Dubey SK (2016) Utilization of microbial community potential for removal of chlorpyrifos: a review. Crit Rev Biotechnol 36:727–742

    CAS  PubMed  Google Scholar 

  • Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551

    Article  CAS  PubMed  Google Scholar 

  • Yi HY, Wu AP, Wang H (2013) The nitrogen absorption effect of Azolla imbricata under different ratios of nitrogen source. J Mountain Agric Biol 32:138–142

    Google Scholar 

  • Yu R, Liu Q, Liu JS, Wang QC, Wang Y (2016) Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 60:353–360

    Article  CAS  Google Scholar 

  • Zaller JG, König N, Tiefenbacher A, Muraoka Y, Querner P, Ratzenböck A, Bonkowski M, Koller R (2016) Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material. BMC Ecol 16:37–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Zang YF, Hao MD, Zhang LQ, Zhang HQ (2015) Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecol Sin 35:1445–1451

    Google Scholar 

  • Zhang BG, Tang L, Li ZM, Wang HL, Xu WT, Zhang HX, Zhuang GQ, Bai ZH (2009) Effect of abamectin insecticide on the microbial community in broccoli phyllosphere. Environ Sci 30:1292–1297

    CAS  Google Scholar 

  • Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, Shen Q (2014) Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol 67:443–453

    Article  PubMed  Google Scholar 

  • Zhou HW, Li DF, Tam N, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5:741–749

    Article  CAS  PubMed  Google Scholar 

  • Zhou WX, Chen DL, Bu YJ, Tu NM (2008) Effects of rice-straw returning to the field on the metabolic diversity of soil microbial communities. Acta Sci Circum 28:326–330

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Zhejiang Public Welfare Technology Application Research Project (No. 2017C32084) and the Science and Technology Innovation Project of Water Pollution Control and Treatment of Wenzhou City (No. S20150001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, XM., Lu, PZ. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata . Appl Microbiol Biotechnol 102, 475–484 (2018). https://doi.org/10.1007/s00253-017-8596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8596-7

Keywords

Navigation