Skip to main content
Log in

Key role of alternative oxidase in lovastatin solid-state fermentation

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lovastatin is a commercially important secondary metabolite produced by Aspergillus terreus, either by solid-state fermentation or by submerged fermentation. In a previous work, we showed that reactive oxygen species (ROS) accumulation in idiophase positively regulates lovastatin biosynthetic genes. In addition, it has been found that lovastatin-specific production decreases with aeration in solid-state fermentation (SSF). To study this phenomenon, we determined ROS accumulation during lovastatin SSF, under high and low aeration conditions. Paradoxically, high aeration caused lower ROS accumulation, and this was the underlying reason of the aeration effect on lovastatin production. Looking for a mechanism that is lowering ROS production under those conditions, we studied alternative respiration. The alternative oxidase provides an alternative route for electrons passing through the electron transport chain to reduce oxygen. Here, we showed that an alternative oxidase (AOX) is expressed in SSF, and only during idiophase. It was shown that higher aeration induces higher alternative respiration (AOX activity), and this is a mechanism that limits ROS generation and keeps them within healthy limits and adequate signaling limits for lovastatin production. Indeed, the aox gene was induced in idiophase, i.e., at the time of ROS accumulation. Moreover, exogenous ROS (H2O2), added to lovastatin solid-state fermentation, induced higher AOX activity. This suggests that high O2 availability in SSF generates dangerously high ROS, so alternative respiration is induced in SSF, indirectly favoring lovastatin production. Conversely, alternative respiration was not detected in lovastatin-submerged fermentation (SmF), although exogenous ROS also induced relatively low AOX activity in SmF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avila N, Tarrago-Castellanos MR, Barrios-Gonzalez J (2017) Environmental cues that induce the physiology of solid medium: a study on lovastatin production by Aspergillus terreus. J Appl Microbiol 122:1029–1038. doi:10.1111/jam.13391

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003a) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302. doi:10.1080/07388550390449294

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003b) Physiological responses of chemostat cultures of Aspergillus niger (B1-D) to simulated and actual oxidative stress. Biotechnol Bioeng 82:691–701. doi:10.1002/bit.10614

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Harvey LM, White S, McNeil B (2004) Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger B1-D. Enzym Microb Technol 34:10–21. doi:10.1016/j.enzmictec.2003.07.008

    Article  CAS  Google Scholar 

  • Baños JG, Tomasini A, Szakacs G, Barrios-Gonalez J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110. doi:10.1016/j.jbiosc.2009.03.006

    Article  PubMed  Google Scholar 

  • Barrios-Gonzalez J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. doi:10.1016/j.procbio.2011.11.016

    Article  CAS  Google Scholar 

  • Barrios-Gonzalez J, Miranda R (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883. doi:10.1007/s00253-009-2239-6

    Article  CAS  PubMed  Google Scholar 

  • Barrios-Gonzalez J, Baños JG, Covarrubias AA, Garay-Arroyo A (2008) Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl Microbiol Biotechnol 79:179–186. doi:10.1007/s00253-008-1409-2

    Article  CAS  PubMed  Google Scholar 

  • Fierro F, Montenegro E, Gutiérrez S, Martín JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:59–604. doi:10.1007/BF00172491

  • Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085. doi:10.1021/acs.chemrev.5b00407

  • Joseph-Horne T, Hollomon DW, Wood PM (2001) Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta Bioenergetics 1504(2-3):179-195. doi:10.1016/S0005-2728(00)00251-6

  • Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29:199–213. doi:10.1080/07388550903004795

    Article  CAS  PubMed  Google Scholar 

  • Minagawa N, Koga S, Nakano M, Sakajo S, Yoshimoto A (1992) Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett 302:217–219. doi:10.1016/0014-5793(92)80444-l

    Article  CAS  PubMed  Google Scholar 

  • Miranda RU, Gomez-Quiroz LE, Mejıa A, Barrios-Gonzalez J (2013) Oxidative sate in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged-and solid-sate fermentations. Fungal Biol 117:85–93. doi:10.1016/j.funbio.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  • Miranda RU, Gomez-Quiroz LE, Mendoza M, Perez-Sanchez A, Fierro F, Barrios-Gonzalez J (2014) Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentation. Fungal Biol 118:879–989. doi:10.1016/j.funbio.2014.09.002

    Article  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481. doi:10.1016/S1360-1385(02)02366-X

  • Narasaiah KV, Sashidhar RB, Subramanyam C (2006) Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 162:179–189. doi:10.1007/s11046-006-0052-7

    Article  CAS  PubMed  Google Scholar 

  • Ooijkaas LP, Tramper J, Buitelaar RM (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzym Microb Technol 22:480–486. doi:10.1023/A:1018545932104

  • Pei-lian W, Pei-lin C, Chun-qi S (2006) Comparison of three biomass estimation methods in solid-state fermentation. J Food Sci Biotechnol 25:1673–1689

    Google Scholar 

  • Sigler K, Chaloupka J, Brozmanova J, Stadler N, Höfer M (1999) Oxidative stress in microorganisms —I: microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiol 44:587–624

  • Suryanarayan S (2003) Current industrial practice in solid-state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195. doi:10.1016/s1369-703x(02)00131-6

    Article  CAS  Google Scholar 

  • Szakács G, Morovján, Tengerdy RP (1998) Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol Lett 20:411–415. doi:10.1023/A:1005391716830

    Article  Google Scholar 

  • Tomasini A, Fajardo C, Barrios-González J (1997) Giberellic acid production using different solidstate fermentation systems. World J Microbiol Biotechnol 13:203-206. doi:10.1023/A:1018545932104

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414. doi:10.1016/0003-9861(85)90293-0

  • Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65:416–424. doi:10.1002/(sici)1097-0290(19991120)65:4<416::aid-bit6>3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  • Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M (1998) Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. Biochim Biophys Acta 1442:161–169. doi:10.1016/s0167-4781(98)00159-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by CONACyT, Mexico, project CB-2013-01 222028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Barrios-González.

Ethics declarations

This article does not contain any studies with human participants or animals, performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sánchez, A., Uribe-Carvajal, S., Cabrera-Orefice, A. et al. Key role of alternative oxidase in lovastatin solid-state fermentation. Appl Microbiol Biotechnol 101, 7347–7356 (2017). https://doi.org/10.1007/s00253-017-8452-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8452-9

Keywords

Navigation