Skip to main content

Advertisement

Log in

Molecular advancements in the development of thermostable phytases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Acuna J, Gabler S, Menezes-Blackburn D, Greiner R, Jorquera M, Mora MDLL (2014) Isolation of phytase-producing Rhizobacteria from extreme environments. In: 20th World Congress Of Soil Science, pp 421–421.

  • Alves NM, Guimaraes LHS, Piccoli RH, Cardoso PG (2016) Production and partial characterization of an extracellular phytase produced by Muscodor sp. under submerged fermentation. Adv Microbiol 6:23–32. doi:10.4236/aim.2016.6100

    Article  Google Scholar 

  • Azeke MA, Greiner R, Jany KD (2011) Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. J Food Biochem 35:213–227. doi:10.1111/j.1745-4514.2010. 00377.x

    Article  CAS  Google Scholar 

  • Balaban NP, Suleimanova AD, Valeeva LR, Shakirov EV, Sharipova MR (2016) Structural characteristics and catalytic mechanism of Bacillus β-propeller phytases. Biochemist 81(8):785–793. doi:10.1134/S0006297916080010

    CAS  Google Scholar 

  • Barrientos L, Scott JJ, Murthy PPN (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106(4):1489–1495. doi:10.1104/pp.106.4.1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhris I, Farhat Khemakhem A, Bouchaala K, Virolle M-J, Chouayekh H (2016) Cloning and characterization of the first actinomycete β propeller phytase from Streptomyces sp. US42. J Basic Microbiol 56(10):1080–1089. doi:10.1002/jobm.201500760

    Article  CAS  PubMed  Google Scholar 

  • Boukhris I, Farhat-Khemakhem A, Blibech M, Bouchaala K, Chouayekh H (2015) Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Int J Biol Macromolec 80:581–587. doi:10.1016/j.ijbiomac.2015.07.014

    Article  CAS  Google Scholar 

  • Chanderman A, Puri AK, Permaul K, Singh S (2016) Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS. Bioprocess Biosyst Eng 39(10):1577–1587. doi:10.1007/s00449-016-1632-7

    Article  CAS  PubMed  Google Scholar 

  • Charoenrat T, Antimanon S, Kocharin K, Tanapongpipat S, Roongsawang N (2016) High cell density process for constitutive production of a recombinant phytase in thermotolerant methylotrophic yeast Ogataea thermomethanolica using table sugar as carbon source. Appl Biochem Biotech 180:1618–1634. doi:10.1007/s12010-016-2191-8

    Article  CAS  Google Scholar 

  • Cho E-A, Kim E-J, Pan J-G (2011) Adsorption immobilization of Escherichia coli phytase on probiotic Bacillus polyfermenticus spores. Enzym Microb Technol 49(1):66–71. doi:10.1016/j. enzmictec.2011.03.006

    Article  CAS  Google Scholar 

  • Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL, Wang AHJ (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12(11):2015–2024. doi:10.1016/j. str.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  • Coban HB, Demirci A, Turhan I (2015) Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng 38:1075–1080. doi:10.1007/s00449-014-1349-4

    Article  CAS  PubMed  Google Scholar 

  • De Jong JA, DeRouchey JM, Tokach MD, Goodband RD, Woodworth JC, Jones CK, Stark CR, Bradley CL, Loughmiller JA, Bergstrom JR (2016) Stability of commercial phytase products stored under different environmental conditions. J Anim Sci 94:114. doi:10.2527/msasas 2016–241

    Article  Google Scholar 

  • Debnath D, Sahu NP, Pal AK, Baruah K, Yengkokpam S, Mukherjee SC (2005) Present scenario and future prospects of phytase in aquafeed. Asian-Aust J Anim Sci 18:1800–1812. doi:10.5713/ajas.2005.1800

    Article  CAS  Google Scholar 

  • Eida MF, Nagaoka T, Wasaki J, Kouno K (2013) Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts. Microbes Environ 28:71–80. doi:10.1264/ jsme2.ME12083

    Article  Google Scholar 

  • Erpel F, Restovic F, Arce-Johnson P (2016) Development of phytase-expressing Chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnol 16:1–7. doi:10.1186/s12896-016-0258-9

    Article  Google Scholar 

  • Farhat-Khemakhem A, Ali MB, Boukhris I, Khemakhem B, Maguin E, Bejar S, Chouayekh H (2013) Crucial role of Pro 257 in the thermostability of Bacillus phytases: biochemical and structural investigation. Int J Biol Macromolec 54:9–15. doi:10.1016/j.ijbiomac.2012.11.020

    Article  CAS  Google Scholar 

  • Fei B, Xu H, Zhang F, Li X, Ma S, Cao Y, Xie J, Qiao D, Cao Y (2013) Relationship between Escherichia coli AppA phytase’s thermostability and salt bridges. J Biosci Bioeng 115:623–627. doi:10.1016/j.jbiosc. 2012.12.010

    Article  PubMed  Google Scholar 

  • Fonseca-Maldonado R, Maller A, Bonneil E, Thibault P, Botelho-Machado C, Ward RJ, Polizeli MLTM (2014) Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expr Purif 99:43–49. doi:10.1016/ j.pep.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  • Fredrikson M, Biot P, Alminger ML, Carlsson N-G, Sandberg A-S (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem 49:1208–1212. doi:10.1021/jf000708x

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, Yuan T, Yao B (2009) Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioeng 103(5):857–864. doi:10.1002/bit.22315

    Article  CAS  PubMed  Google Scholar 

  • Gaind S, Singh S (2015) Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int Biodeterioration Biodegrad 99:15–22. doi:10.1016/j.ibiod.2014.12.013

    Article  CAS  Google Scholar 

  • Greiner R, Koneitzny, U. (2011) Phytases: biochemistry, enzymology and characteristics relevant to animal feed. In: Partridge MRBaGG (ed) Enzymes in farm animal nutrition. 2nd edn. CAB International

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  • Greppi A, Krych L, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N, Cocolin L, Jespersen L (2015) Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 205:81–89. doi:10.1016/j.ijfoodmicro.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Olazaran M, Rodriguez-Blanco L, Carreon-Trevino JG, Gallegos-Lopez JA, Viader-Salvado JM (2010) Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol 76:5601–5608. doi:10.1128/AEM.00762-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH (2000) Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Mol Biol 7:147–153. doi:10.1038/72421

    Article  CAS  Google Scholar 

  • Han Y, Wilson DB, Gen Lei X (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara A, Ebina S, Kondo A, Funaguma T (1985) A new type of phytase from pollen of Typha latifolia L. Agric Biol Chem 49(12):3539–3544

    Article  CAS  Google Scholar 

  • Hesham El Enshasy NZO, Roslinda Abd Malek (2014) Industrial platform design for fungal phytase production in semi-industrial scale. Paper presented at the 14 AIChE Annual Meeting, Atlanta, GA

  • Jain J, Singh B (2016) Characteristics and biotechnological applications of bacterial phytases. Process Biochem 51:159–169. doi:10.1016/j.procbio.2015.12.004

    Article  CAS  Google Scholar 

  • Joseph B, Chacko M, Rebello S, Ks R, Ng RB, Karthikeyan S (2016) Molecular taxonomic identification, biosynthesis and in vitro antibacterial activity of ZNO nanoparticles using Boerhavia diffusa against MRSA. Int J Toxicol Pharma Res 8:40–44

    Google Scholar 

  • Kaur P, Singh B, Boer E, Straube N, Piontek M, Satyanarayana T, Kunze G (2010) Pphy—a cell-bound phytase from the yeast Pichia anomala: molecular cloning of the gene PPHY and characterization of the recombinant enzyme. J Biotechnol 149:8–15. doi:10.1016/j.jbiotec.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-O, Kim H-K, Bae K-S, Yu J-H, Oh T-K (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzy Microb Technol 22:2–7

    Article  CAS  Google Scholar 

  • Kim M-S, Weaver JD, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79:751–758. doi:10.1007/s00253-008-1478-2

    Article  CAS  PubMed  Google Scholar 

  • Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) Mechanism of Fe (III)-Zn (II) purple acid phosphatase based on crystal structures. J Mol Biol 259(4):737–748. doi:10.1006/jmbi.1996.0354

    Article  CAS  PubMed  Google Scholar 

  • Kostrewa D, Wyss M, D’arcy A, van Loon APGM (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution1. J Mol Biol 288(5):965–974. doi:10.1006/ jmbi.1999.2736

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Singh D, Sangwan P, Gill PK (2015) Management of environmental phosphorus pollution using phytases: current challenges and future prospects. In: Applied environmental biotechnology: present scenario and future trends. Springer, pp 97–114.

  • Kumar V, Sinha A, Makkar H, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120(4):945–959. doi:10.1016/j.foodchem.2009.11.052

    Article  CAS  Google Scholar 

  • Lee SH, Cho J, Bok J, Kang S, Choi Y, Lee PCW (2015) Characterization, gene cloning, and sequencing of a fungal phytase, PhyA, from Penicillium oxalicum PJ3. Prep Biochem Biotechnol 45:336–347. doi:10.1080/10826068.2014.923446

    Article  CAS  PubMed  Google Scholar 

  • Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H (2007) Phytase: source, structure and application. In Industrial enzymes. Springer. pp. 505–529.

  • Lei XG, Stahl CH (2000) Nutritional benefits of phytase and dietary determinants of its efficacy. J Appl Anim Res 17:97–112. doi:10.1080/09712119.2000.9706294

    Article  CAS  Google Scholar 

  • Lei X, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481. doi:10.1007/s002530100795

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chi Z, Liu Z, Li J, Wang X, Hirimuthugoda NY (2008) Purification and characterization of extracellular phytase from a marine yeast Kodamaea ohmeri BG3. Mar Biotechnol 10:190–197. doi:10.1007/ s10126 -007-9051-z

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lin Y, Huang Y, Liu X, Liang S (2014) Citrobacter amalonaticus phytase on the cell surface of Pichia pastoris exhibits high pH stability as a promising potential feed supplement. PLoS One 9:e114728. doi:10.1371/journal.pone.0114728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li RJ, Lu W-j, Guo C-j, Li XJ, Gu J-T, Xiao K (2012) Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP)-type phytase gene in rice (Oryza sativa L.) J Integr Agric 11:1217–1226. doi:10.1016/S2095-3119(12)60118-X

    Article  CAS  Google Scholar 

  • Li X, Wu Z, Li W, Yan R, Li L, Li J, Li Y, Li M (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125. doi:10.1007/s00253-006-0750-6

    Article  CAS  PubMed  Google Scholar 

  • Liu B-L, Jong C-H, Tzeng Y-M (1999) Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzym Microb Technol 25:517–521. doi:10.1016/S0141-0229(99)00076-9

    Article  CAS  Google Scholar 

  • Luangthongkam P, Fang L, Noomhorm A, Lamsal B (2015) Addition of cellulolytic enzymes and phytase for improving ethanol fermentation performance and oil recovery in corn dry grind process. Ind Crop Prod 77:803–808. doi:10.1016/j.indcrop.2015.09.060

    Article  CAS  Google Scholar 

  • Lung S-C, Chan W-L, Yip W, Wang L, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169:341–349. doi:10.1016/j.plantsci.2005.03.006

    Article  CAS  Google Scholar 

  • Madeira JV, Macedo JA, Macedo GA (2011) Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresource Technol 102:7343–7348. doi:10.1016/j.biortech.2011.04.099

    Article  CAS  Google Scholar 

  • Maenz DD, Classen HL (1998) Phytase activity in the small intestinal brush border membrane of the chicken. Poult Sci 77:557–563. doi:10.1093/ps/77.4.557

    Article  CAS  PubMed  Google Scholar 

  • Manobhavan M, Sridhar M, Ajith S, Shet D, Pal DT, Gowda NKS, Elangovan AV (2015) Efficacy of fungal phytase on growth performance and bone mineralization in broiler chicken. Anim Nutr Feed Techn 15:129–136. doi:10.5958/0974-181X.2015.00014.1

    Article  Google Scholar 

  • Marlida Y, Delfita R, Adnadi P, Ciptaan G (2010a) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474. doi:10.3923/pjn.2010.471.474

    Article  CAS  Google Scholar 

  • Marlida Y, Delfita R, Gusmanizar N, Ciptaan G (2010b) Identification characterization and production of phytase from endophytic fungi. World Acad Sci Eng Technol 65:1043–1046. doi:10.3923/pjn. 2010.471.474

    Google Scholar 

  • Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, Van Loon AP (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373–381. doi:10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  • Memenza M, Mostacero E, Camarena F, Zuniga D (2016) Disease control and plant growth promotion (PGP) of selected bacterial strains in Phaseolus vulgaris. In: Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, pp 237–245.

  • Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, de la Luz MM (2011) Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresource Technol 102:9360–9367. doi:10.1016/j.biortech.2011.07.054

    Article  CAS  Google Scholar 

  • Mittal A, Gupta V, Singh G, Yadav A, Aggarwal NK (2013) Phytase: a boom in food industry. Octa J Biosci 1(2):158–169. doi:10.1007/s11248-007-9138-3. 9

    Google Scholar 

  • Mittal A, Singh G, Goyal V, Yadav A, Aneja KR, Gautam SK, Aggarwal NK (2016) Isolation and biochemical characterization of acido-thermophilic extracellular phytase producing bacterial strain for potential application in poultry feed. Jundishapur J Microbiol 4(4):273–282

    Google Scholar 

  • Mullaney EJ, Ullah AHJ (2005) Conservation of cysteine residues in fungal histidine acid phytases. Biochem Biophys Res Commun 328(2):404–408. doi:10.1016/j.bbrc.2004.12.181

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Suzuki T, Tokuda J, Kato N, Sakai Y, Mochizuki D, Takhashi H (1999) Secretory manufacture of Schwanniomyces occidentalis phytase using a Candida boidinii host. Eur Patent Appl Ep 931:837

    Google Scholar 

  • Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pandey A (2004) Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl Biochem Biotechnol 118:–214. doi:10.1385/ABAB:118:1–3:205

  • Nielsen PH, Wenzel H (2007) Environmental assessment of Ronozyme® P5000 CT phytase as an alternative to inorganic phosphate supplementation to pig feed used in intensive pig production. Int J LCA 12:514–520. doi:10.1065/lca2006.08.265.2

    Article  CAS  Google Scholar 

  • Niu C, Luo H, Shi P, Huang H, Wang Y, Yang P, Yao B (2016) N-Glycosylation improves the pepsin resistance of histidine acid phosphatase phytases by enhancing their stability at acidic pHs and reducing pepsin’s accessibility to its cleavage sites. Appl Environ Microbiol 82:1004–1014. doi:10.1128/AEM.02881-15

    Article  CAS  PubMed Central  Google Scholar 

  • Nuobariene L, Cizeikiene D, Gradzeviciute E, Hansen AS, Rasmussen SRK, Juodeikiene G, Vogensen FK (2015) Phytase-active lactic acid bacteria from sourdoughs: isolation and identification. LWT Food Sci Technol 63:766–772. doi:10.1016/j.lwt.2015.03. 018

    Article  CAS  Google Scholar 

  • Olczak M, Morawiecka B, Watorek W (2003) Plant purple acid phosphatases—genes, structures and biological function. Acta Biochim Pol 50(4):1245–1256

    CAS  PubMed  Google Scholar 

  • Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles CyTA. J Food 14:74–83. doi:10.1080/19476337.2015

    CAS  Google Scholar 

  • Pandey A (2016) Kluyveromyces lactis as a cell factory for secreted production of a thermostable phytase from fungal source. Paper presented at the INDO-US Workshop on Cell Factories, IIT Bombay, Mumbai, India, 18–20 March 2016

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresource Technol 77:203–214

    Article  CAS  Google Scholar 

  • Parashar D, Satyanarayana T (2016) Enhancing the production of recombinant acidic α-amylase and phytase in Pichia pastoris under dual promoters [constitutive (GAP) and inducible (AOX)] in mixed fed batch high cell density cultivation. Process Biochem. doi:10.1016/j.procbio.2016.07.027

    Google Scholar 

  • Parhamfar M, Badoei-Dalfard A, Khaleghi M, Hassanshahian M (2015) Purification and characterization of an acidic, thermophilic phytase from a newly isolated Geobacillus stearothermophilus strain DM12. Prog Biol Sci 5:61–73

    Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, Van Loon AP (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigates. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillippy BQ (2001) Stability of plant and microbial phytases. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Rani R, Ghosh S (2011) Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization. Bioresource Technol 102:10641–10649. doi:10.1016/j.biortech.2011. 08.075

    Article  CAS  Google Scholar 

  • Ranjan B, Satyanarayana T (2016) Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris and applications. Mol Biotechnol 58:137–147. doi:10.1007/s12033-015-9909-7

    Article  CAS  PubMed  Google Scholar 

  • Reddy CS, Achary VMM, Manna M, Singh J, Kaul T, Reddy MK (2015) Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33). Appl Biochem Biotechnol 175(6):3058–3067. doi:10.1007/s12010-015-1487-4

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro Correa TL, de Queiroz MV, de Araajo EF (2015) Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. Microbiol Res 170:205–212. doi:10.1016/j.micres.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  • Rishad KS, Rebello S, Nathan VK, Shabanamol S, Jisha MS (2016) Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatal Agric Biotechnol 5:143–149. doi:10.1016/j.bcab. 2016.01.009

    Google Scholar 

  • Roongsawang N, Puseenam A, Kitikhun S, Sae-Tang K, Harnpicharnchai P, Ohashi T, Fujiyama K, Tirasophon W, Tanapongpipat S (2016) A novel potential signal peptide sequence and overexpression of ER-resident chaperones enhance heterologous protein secretion in thermotolerant methylotrophic yeast Ogataea thermomethanolica. Appl Biochem Biotechnol 178:710–724. doi:10.1007/s12010-015-1904-8

    Article  CAS  PubMed  Google Scholar 

  • Roy MP, Mazumdar D, Dutta S, Saha SP, Ghosh S (2016) Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli. PLoS One 11:e0145745. doi:10.1371/journal.pone.0145745

    Article  CAS  Google Scholar 

  • Roy S, Mehta A, Mishra RR (2013) Production and characterization of extracellular phytase: an industrial enzyme Vegetos. Int J Plant Res 26:83–87. doi:10.5958/j.2229-4473.26.1.012

    Google Scholar 

  • Salmon DNX, Fendrich RC, Cruz MA, Montibeller VW, Vandenberghe LPS, Soccol CR, Spier MR (2016) Bioprocess for phytase production by Ganoderma sp. MR-56 in different types of bioreactors through submerged cultivation. Biochem Eng J. doi:10.1016/j.bej.2016.07.015

    Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38. doi:10.1023/A:1005438121763

    Article  CAS  Google Scholar 

  • Sato VS, Jorge JA, Guimaraes LHS (2016) Characterization of a thermotolerant phytase produced by Rhizopus microsporus var. microsporus biofilm on an inert support using sugarcane bagasse as carbon source. Appl Biochem Biotechnol 179:610–624. doi:10.1007/s12010-016-2018-7

    Article  CAS  PubMed  Google Scholar 

  • Schoene C, Bennett SP, Howarth M (2016) SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Sci Rep 6:21151. doi:10.1038/ srep21151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty JK, Paulson B, Pepsin M, Chotani G, Dean B, Hruby M (2008) Phytase in fuel ethanol production offers economical and environmental benefits. Int Sugar J 110(1311):160–174

    CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2014) Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J Anim Physiol Anim Nutr 99:646–660. doi:10.1111/jpn.12236

    Article  CAS  Google Scholar 

  • Speight R Biotechnology in the development of improved phytases. In: 27th Annual Australian Poultry Science Symposium, Sydney, N.S.W., 14–17 February 2016.

  • Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B (2016) Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol 100:2225–2241. doi:10.1007/s00253-015-7097-9

    Article  CAS  PubMed  Google Scholar 

  • Tan WQ, Yee PC, Chin SC, Chin YB, Vui LC, Abdullah N, Radu S, Wan HY (2015) Cloning of a novel phytase from an anaerobic rumen bacterium, Mitsuokella jalaludinii, and its expression in Escherichia coli. J Integr Agric 14:1816–1826. doi:10.1016/S2095-3119(14)60960-6

    Article  CAS  Google Scholar 

  • Tomschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon AP, Pasamontes L (2002) Engineering of phytase for improved activity at low pH. Appl Environ Microbiol 68:1907–1913. doi:10.1128/AEM.68.4.1907-1913.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. J Inorg Biochem 105:1000–1007. doi:10.1016/j.jinorgbio.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Mamo G, Mattiasson B, Hatti-Kaul R (2010) A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J Ind Microbiol Biotechnol 37:279–287

    Article  CAS  PubMed  Google Scholar 

  • Ushasree MV, Sumayya HBS, Pandey A (2011) Adopting structural elements from intrinsically stable phytase--a promising strategy towards thermostable phytases. Indian J Biotechnol 10:458–467

    CAS  Google Scholar 

  • Ushasree MV, Vidya J, Pandey A (2014) Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. Process Biochem 49:1440–1447

    Article  CAS  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzy Microb Technol 35:3–14. doi:10.1016/j.enzmictec.2004.03.010

    Article  CAS  Google Scholar 

  • Viader-Salvado JM, Gallegos-Lopez JA, Carreon-Trevino JG, Castillo-Galvan M, Rojo-Dominguez A, Guerrero-Olazaran M (2010) Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl Environ Microbiol 76:6423–6430. doi:10.1128/AEM.00253-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vihnudas J, Jojula M, Singaracharya MA (2012) A culturing of fungi for phytase production by solid state from different sources. Curr World Environ 7:187–190

    CAS  Google Scholar 

  • Vincent JB, Crowder MW, Averill BA (1992) Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci 17(3):105–110. doi:10.1016/0968-0004(92)90246-6

    Article  CAS  PubMed  Google Scholar 

  • Vishnupriya CS, Sunish KS, Rebello S (2016) Molecular characterisation of alkaline protease producing Bacillus subtilis from soil. Int J Res Pharm Chem 6:485–490

    CAS  Google Scholar 

  • Wulandari R, Sari EN, Ratriyanto A, Weldekiros H, Greiner R (2015) Phytase-producing bacteria from extreme regions in Indonesia. Braz Arch Biol Technol 58:711–717. doi:10.1590/S1516-89132015050173

    Article  CAS  Google Scholar 

  • Wyss M, Pasamontes L, Rémy R, Kohler J, Kusznir E, Gadient M, Muller F, van Loon AP (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigates phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl Environ Microbiol 64:4446–4451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Yu L, Zhang L, Guo Y, Dai K, Chen Y (2014) Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability. J Environ Sci 26:2315–2321. doi:10.1016/j.jes.2014.09.008

    Article  Google Scholar 

  • Yao M-Z, Zhang Y-H, Lu W-L, Hu M-Q, Wang W, Liang A-H (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112:1–14. doi:10.1111/j. 1365–2672.2011.05181.x

    Article  CAS  PubMed  Google Scholar 

  • Yip W, Wang L, Cheng C, Wu W, Lung S, Lim B-L (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154. doi:10.1016/ j.bbrc.2003.09.136

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Chen Y (2013) Purification and characterization of a novel neutral and heat-tolerant phytase from a newly isolated strain Bacillus nealsonii ZJ0702. BMC Biotechnol 13:78. doi:10.1186/1472-6750-13-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Mullaney EJ, Lei XG (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73:3069–3076. doi:10.1128/AEM.02970-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Liu H, Zhang Y, Zhang Y (2010) Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng 110:638–645. doi:10.1016/j.jbiosc. 2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Zhou X-L, Shen W, Zhuge J, Wang Z-X (2006) Biochemical properties of a thermostable phytase from Neurospora crassa. FEMS Microbiol Lett 258:61–66. doi:10.1111/j.1574-6968.2006.00205.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from SERB is gratefully acknowledged. The authors also thank the principal (St. Joseph’s College) for the facility provided for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Embalil Mathachan Aneesh.

Ethics declarations

Funding

This study is funded by SERB (file no. PDF/2015/000472).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebello, S., Jose, L., Sindhu, R. et al. Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 101, 2677–2689 (2017). https://doi.org/10.1007/s00253-017-8195-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8195-7

Keywords

Navigation