Skip to main content
Log in

Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biomass-derived xylose is an economically interesting substrate for the sustainable microbial production of value-added compounds. Escherichia coli could barely use xylose to directly produce gamma-aminobutyric acid. In this study, E. coli strains that could directly produce gamma-aminobutyric acid were developed through the deletion of eight genes sucA, puuE, gabT, gabP, xylA, xylB, waaC, and waaF, and the overexpression of two E. coli genes gadB and gdhA, as well as five Caulobacter crescent genes CcxylA, CcxylB, CcxylC, CcxylD, and CcxylX. Both E. coli strains W3110 and JM109 could directly produce gamma-aminobutyric acid from xylose after either overexpression of the seven genes or deletion of the eight genes. Overexpression of the seven genes of in the multiple deletion mutants further increased gamma-aminobutyric acid production. Among the 28 recombinant E. coli strains constructed in this study, the highest gamma-aminobutyric acid was produced by JWZ08/pWZt7-g3/pWZt7-xyl. JWZ08/pWZt7-g3/pWZt7-xyl could produce 3.95 g/L gamma-aminobutyric acid in flask cultivation, using xylose as the sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeghate E, Ponery A (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotech 11(2):187–198. doi:10.1016/S0958-1669(00)00085-9

    Article  CAS  PubMed  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Micro 73(4):1308–1319. doi:10.1128/aem.01867-06

    Article  CAS  Google Scholar 

  • Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S (2015) Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol 6(1520)

  • Brabetz W, Müller-Loennies S, Holst O, Brade H (1997) Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution. Eur J Biochem 247(2):716–724

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Xian M, Zou H, Zhang H (2013) Metabolic engineering of Escherichia coli for the production of xylonate. Plos one 8(7):1–7. doi:10.1371/journal.pone.0067305

    CAS  Google Scholar 

  • Chen H, He X, Yan L, Li J, He Q, Zhang C, Wei B, Ye Z, Jie W (2016) Extraction, purification and anti-fatigue activity of γ-aminobutyric acid from mulberry (Morus alba L.) leaves. Sci Rep 6:18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubendorf JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219(1):45–59. doi:10.1016/0022-2836(91)90856-2

    Article  Google Scholar 

  • Eberts TJ, Sample RH, Glick MR, Ellis GH (1979) A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin Chem 25(8):1440–1443

    CAS  PubMed  Google Scholar 

  • Equbal MJ, Srivastava P, Agarwal GP, Deb KJ (2013) Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter. Appl Microbiol Biotechnol 97(17):7755–7766. doi:10.1007/s00253-013-4900-3

    Article  CAS  PubMed  Google Scholar 

  • Evinger M, Agabian N (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132(1):294–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Duan Q, Wang D, Zhang Y, Zheng C (2013) Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agr Food Chem 61(8):1914–1919

    Article  CAS  Google Scholar 

  • Han Y, Li Y, Chen J, Tan Y, Guan F, Wang X (2013) Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides. Mar Drugs. vol 11:363–376

    Article  CAS  Google Scholar 

  • Hirasawa T, Kim J, Shirai T, Furusawa C, Shimizu H (2012) Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum. Subcell Biochem 64:261–281. doi:10.1007/978-94-007-5055-5_13

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Mei L-h WH, Lin D-q (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microb Biot 23(6):865–871

    Article  CAS  Google Scholar 

  • Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S (2013) Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05. World J Microb Biot 29(7):1225–1232. doi:10.1007/s11274-013-1285-5

    Article  CAS  Google Scholar 

  • Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) D-Xylose Degradation Pathway in the Halophilic Archaeon Haloferax voIcanii. J Biol Chem 284(40):27290–27303. doi:10.1074/jbc.M109.003814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT (2009) Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol 130(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22(6):497–504

    Article  CAS  Google Scholar 

  • Kőrös Á, Varga Z, Molnár-Perl I (2008) Simultaneous analysis of amino acids and amines as their o-phthalaldehyde-ethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J Chromatogra A 1203(2):146–152. doi:10.1016/j.chroma.2008.07.035

    Article  Google Scholar 

  • Lacroix N, St-Gelais D, Champagne C, Vuillemard J (2013) Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci Technol 93(3):315–327

    Article  CAS  Google Scholar 

  • Le Vo T, Pham V, J-s K, Lee S, Park S, Hong S (2014) Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli. Biotechnol Bioproc E 19(2):327–331. doi:10.1007/s12257-013-0713-6

    Article  Google Scholar 

  • Li H, Qiu T, Gao D, Cao Y (2010a) Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38(5):1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Li H, Qiu T, Huang G, Cao Y (2010b) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J (2012a) High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Bioresource Technol 115:244–248

    Article  CAS  Google Scholar 

  • Liu R, Liang L, Chen K, Ma J, Jiang M, Wei P, Ouyang P (2012b) Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 94(4):959–968. doi:10.1007/s00253-012-3896-4

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Chen Z, Gu Z, Han Y (2008) Isolation of γ-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochem Eng J 41(1):48–52

    Article  CAS  Google Scholar 

  • Nishio Y, Ogishima S, Ichikawa M, Yamada Y, Usuda Y, Masuda T, Tanaka H (2013) Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst Biol. vol 7(p):92

    Article  Google Scholar 

  • Park S, Kim E, Noh W, Oh Y, Kim H, Song B, Cho K, Hong S, Lee S, Jegal J (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioproc Biosyst Eng 36(7):885–892. doi:10.1007/s00449-012-0821-2

    Article  CAS  Google Scholar 

  • Pham VD, Lee SH, Park SJ, Hong SH (2015) Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol 207:52–57. doi:10.1016/j.jbiotec.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  • Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH (2016a) Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biot 43(1):79–86. doi:10.1007/s10295-015-1712-8

    Article  Google Scholar 

  • Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH (2016b) Gamma-aminobutyric acid production through GABA shunt by synthetic scaffolds introduction in recombinant Escherichia coli. Biotechnol Bioproc E 21(2):261–267. doi:10.1007/s12257-015-0783-8

    Article  CAS  Google Scholar 

  • Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, Noack S, Marienhagen J (2014) Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. J Biotechnol 192(Part A):156–160

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2015) Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production. Bioresource Technol 190:182–188. doi:10.1016/j.biortech.2015.04.079

    Article  CAS  Google Scholar 

  • Seungwoon L, Jungoh A, Kim Y-G, Jung J-K, Lee H, Lee EG (2013) Gamma-aminobutyric acid production using immobilized glutamate decarboxylase followed by downstream processing with cation exchange chromatography. Int J Mol Sci 14(1):1728–1739. doi:10.3390/ijms14011728

    Article  Google Scholar 

  • Shi F, Li Y (2011) Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33(12):2469–2474. doi:10.1007/s10529-011-0723-4

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Jiang J, Li Y, Li Y, Xie Y (2013) Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biot 40(11):1285–1296. doi:10.1007/s10295-013-1316-0

    Article  CAS  Google Scholar 

  • Siragusa S, De Angelis M, Di Cagno R, Rizzello C, Coda R, Gobbetti M (2007) Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microb 73(22):7283–7290

    Article  CAS  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic Analysis of a Novel Pathway for D-Xylose Metabolism in Caulobacter crescentus. J Bacteriol 189(5):50–50. doi:10.1128/jb.01438-06

    Article  Google Scholar 

  • Su B, Wu M, Zhang Z, Lin J, Yang L (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122. doi:10.1016/j.ymben.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  • Tajabadi N, Baradaran A, Ebrahimpour A, Rahim RA, Bakar FA, Manap MYA, Mohammed AS, Saari N (2015) Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production. Microb Biotechnol 8(4):623–632. doi:10.1111/1751-7915.12254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M (2010) Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biol Pharm Bull 33(10):1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Valdehuesa KNG, Liu H, Ramos KRM, Park SJ, Nisola GM, Lee W-K, Chung W-J (2014) Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem 49(1):25–32. doi:10.1016/j.procbio.2013.10.002

    Article  CAS  Google Scholar 

  • Wang Z, Wang J, Ren G, Li Y, Wang X (2015) Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar Drugs 13(6):3325–3339. doi:10.3390/md13063325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weimberg R (1961) Pentose oxidation by Pseudomonas fragi. J Biol Chem 236:629–635

    CAS  PubMed  Google Scholar 

  • Wong T, Guin C, Bottiglieri T, Snead OC (2003) GABA, γ-hydroxybutyric acid, and neurological disease. Ann Neurol 54(S6):S3–S12

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du G, Zhou J, Chen J (2013) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55. doi:10.1016/j.ymben.2012.11.009

    Article  PubMed  Google Scholar 

  • Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Meth 80(1):86–92

    Article  CAS  Google Scholar 

  • Yamano N, Kawasaki N, Takeda S, Nakayama A (2012) Production of 2-Pyrrolidone from Biobased Glutamate by Using Escherichia coli. J Polym Environ 21(2):528–533. doi:10.1007/s10924-012-0466-x

    Article  Google Scholar 

  • Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF (2012) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94(6):1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Yang T, Rao Z, Sun H, Xu M, Zhang X, Xu Z, Yang S (2014) Efficient one-step preparation of gamma-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem 16(9):4190–4197. doi:10.1039/c4gc00607k

    Article  CAS  Google Scholar 

  • Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, Manow R, Zhou S (2013) Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb Cell Fact 12(1):57. doi:10.1186/1475-2859-12-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao A, Hu X, Pan L, Wang X (2015) Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 99(7):3191–3200. doi:10.1007/s00253-014-6294-2

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Hu X, Li Y, Chen C, Wang X (2016) Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production. AMB Express 6(1):1–13. doi:10.1186/s13568-016-0231-y

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by grants from the National Natural Science Foundation of China (NSFC31370131) and the Six Talent Peaks Project of Jiangsu Province (2012-SWYY-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Hu, X. & Wang, X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol 101, 3587–3603 (2017). https://doi.org/10.1007/s00253-017-8162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8162-3

Keywords

Navigation