Skip to main content
Log in

Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetate is ubiquitously found in natural environments. Its availability in the gut is high as a result of the fermentation of nutrients, and although it is rapidly absorbed by intestinal mucosa, it can also be used as carbon source by some members of gut microbiota. The metabolism of acetate in Escherichia coli has attracted the attention of the scientific community due to its role in central metabolism and its link to multiple physiological features. In this microorganism, acetate is involved directly or indirectly on the regulation of functional processes, such as motility, formation of biofilms, and responses to stress. Furthermore, it is a relevant nutrient in gut, where it serves additional roles, which regulate or, at least, modulate pathophysiological responses of E. coli and other bacteria. Acetate is one of the major by-products of anaerobic (fermenting) metabolism, and it is also produced under fully aerobic conditions. This acetate overflow is recognized as one of the major drawbacks limiting E. coli’s productivity in biotechnological processes. This review sums up current knowledge on acetate metabolism in E. coli, explaining the major milestones that have led to deciphering its complex regulation in the K-12 strain. Major differences in the metabolism of acetate in other strains will be underlined, with a focus on strains of biotechnological and biomedical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Hamid AM, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483–1498. doi:10.1099/00221287-147-6-1483

    Article  CAS  PubMed  Google Scholar 

  • AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, Sahu AK, Becher D, Antelmann H, Mrksich M, Anderson WF, Gibson BW, Schilling B, Wolfe AJ (2015) The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. Microbiologyopen 4:66–83. doi:10.1002/mbo3.223

    Article  CAS  PubMed  Google Scholar 

  • Alteri CJ, Mobley HLT (2012) Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15:3–9. doi:10.1016/j.mib.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AF, Rodriguez C, Georgellis D (2013) Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J Bacteriol 195:3054–3061. doi:10.1128/JB.00406-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anfora AT, Halladin DK, Haugen BJ, Welch RA (2008) Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect Immun 76:5760–5767. doi:10.1128/IAI.00618-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12:9. doi:10.1186/1471-2164-12-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arifin Y, Archer C, Lim S, Quek L-E, Sugiarto H, Marcellin E, Vickers CE, Krömer JO, Nielsen LK (2014) Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5956-4

    PubMed  Google Scholar 

  • Aristidou AA, San KY, Bennett GN (1995) Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol Prog 11:475–478. doi:10.1021/bp00034a019

    Article  CAS  PubMed  Google Scholar 

  • Avison MB, Horton RE, Walsh TR, Bennett PM (2001) Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276:26955–26961. doi:10.1074/jbc.M011186200

    Article  CAS  PubMed  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19. doi:10.1002/bit.260470103

    Article  CAS  PubMed  Google Scholar 

  • Basan M, Hui S, Okano H, Zhang Z, Shen Y, Williamson JR, Hwa T (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528:99–104. doi:10.1038/nature15765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckham KSH, Connolly JPR, Ritchie JM, Wang D, Gawthorne JA, Tahoun A, Gally DL, Burgess K, Burchmore RJ, Smith BO, Beatson SA, Byron O, Wolfe AJ, Douce GR, Roe AJ (2014) The metabolic enzyme AdhE controls the virulence of Escherichia coli O157:H7. Mol Microbiol 93:199–211. doi:10.1111/mmi.12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergholz TM, Wick LM, Qi W, Riordan JT, Ouellette LM, Whittam TS (2007) Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium. BMC Microbiol 7:97. doi:10.1186/1471-2180-7-97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernal V, Castaño-Cerezo S, Gallego-Jara J, Ecija-Conesa A, de Diego T, Iborra JL, Cánovas M (2014) Regulation of bacterial physiology by lysine acetylation of proteins. New Biotechnol 31:586–595. doi:10.1016/j.nbt.2014.03.002

    Article  CAS  Google Scholar 

  • Borja GM, Meza Mora E, Barrón B, Gosset G, Ramírez OT, Lara AR (2012) Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode. Microb Cell Factories 11:132. doi:10.1186/1475-2859-11-132

    Article  CAS  Google Scholar 

  • Brice CB, Kornberg HL (1968) Genetic control of isocitrate lyase activity in Escherichia coli. J Bacteriol 96:2185–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TDK, Jonesmortimer MC, Kornberg HL (1977) Enzymic interconversion of acetate and acetyl-coenzyme-a in Escherichia coli. J Gen Microbiol 102:327–336

    Article  CAS  PubMed  Google Scholar 

  • Canny GO, McCormick BA (2008) Bacteria in the intestine, helpful residents or enemies from within? Infect Immun 76:3360–3373. doi:10.1128/IAI.00187-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariss SJL, Tayler AE, Avison MB (2008) Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J Bacteriol 190:3930–3939. doi:10.1128/JB.00108-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42:D459–D471. doi:10.1093/nar/gkt1103

    Article  CAS  PubMed  Google Scholar 

  • Castaño-Cerezo S, Pastor JMJ, Renilla S, Bernal V, Iborra JLJ, Cánovas M, Canovas M (2009) An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microb Cell Factories 8:54. doi:10.1186/1475-2859-8-54

    Article  CAS  Google Scholar 

  • Castaño-Cerezo S, Bernal V, Blanco-Catalá J, Iborra JL, Cánovas M (2011) cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol Microbiol 82:1110–1128

    Article  PubMed  CAS  Google Scholar 

  • Castaño-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S, Sánchez-Díaz NC, Sauer U, Heck AJR, Altelaar AFM, Cánovas M (2014) Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. Mol Syst Biol 10:762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castaño-Cerezo S, Bernal V, Röhrig T, Termeer S, Cánovas M (2015) Regulation of acetate metabolism in Escherichia coli BL21 by protein N(ε)-lysine acetylation. Appl Microbiol Biotechnol 99:3533–3545. doi:10.1007/s00253-014-6280-8

    Article  PubMed  CAS  Google Scholar 

  • Chang YY, Wang AY, Cronan JE (1994) Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol Microbiol 11:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Chang D-E, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432. doi:10.1073/pnas.0307888101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Shin D, Ji GE, Heu S, Ryu S (2005) High-level recombinant protein production by overexpression of Mlc in Escherichia coli. J Biotechnol 119:197–203. doi:10.1016/j.jbiotec.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • Chou CH, Bennett GN, San KY (1994) Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture. Biotechnol Prog 10:644–647. doi:10.1021/bp00030a009

    Article  CAS  PubMed  Google Scholar 

  • Chung T, Klumpp DJ, LaPorte DC (1988) Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map. J Bacteriol 170(1):386–392

  • Contiero J, Beatty C, Kumari S, DeSanti CL, Strohl WR, Wolfe A (2000) Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol 24:421–430. doi:10.1038/sj.jim.7000014

    Article  CAS  Google Scholar 

  • Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC (2012) Structural insights into the substrate specificity of the Rhodopseudomonas palustris protein acetyltransferase RpPat: identification of a loop critical for recognition by RpPat. J Biol Chem 287:41392–41404. doi:10.1074/jbc.M112.417360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Englyst HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45:1243–1255

    CAS  PubMed  Google Scholar 

  • Cunningham DS, Koepsel RR, Ataai MM, Domach MM (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Factories 8:27. doi:10.1186/1475-2859-8-27

    Article  CAS  Google Scholar 

  • Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF (2009) Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol 394:634–643. doi:10.1016/j.jmb.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  • De Anda R, Lara AR, Hernández V, Hernández-Montalvo V, Gosset G, Bolívar F, Ramírez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8:281–290. doi:10.1016/j.ymben.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • de Diego PT, Gallego-Jara J, Castaño-Cerezo S, Bernal Sánchez V, Fernández Espín V, García de la Torre J, Manjón Rubio A, Cánovas Díaz M (2015) The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization. J Biol Chem. doi:10.1074/jbc.M115.649806

    Google Scholar 

  • de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357

    PubMed  PubMed Central  Google Scholar 

  • De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2007a) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23:1053–1063. doi:10.1021/bp070170g

    CAS  PubMed  Google Scholar 

  • De Mey M, De Maeseneire S, Soetaert W, Vandamme E (2007b) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700. doi:10.1007/s10295-007-0244-2

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149:73–80. doi:10.1016/j.ijfoodmicro.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  • Diez-Gonzalez F, Russell JB (1997) The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology 143(Pt 4):1175–1180. doi:10.1099/00221287-143-4-1175

    Article  CAS  PubMed  Google Scholar 

  • Dittrich CR, Bennett GN, San K-Y (2005) Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog 21:1062–1067. doi:10.1021/bp050073s

    Article  CAS  PubMed  Google Scholar 

  • Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536. doi:10.1016/j.tibtech.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Enjalbert B, Cocaign-Bousquet M, Portais J-C, Letisse F (2015) Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition. J Bacteriol. doi:10.1128/JB.00128-15

    PubMed  PubMed Central  Google Scholar 

  • Escalante A, Salinas Cervantes A, Gosset G, Bolívar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94:1483–1494. doi:10.1007/s00253-012-4101-5

    Article  CAS  PubMed  Google Scholar 

  • Esquerré T, Laguerre S, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M (2014) Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates. Nucleic Acids Res 42:2460–2472. doi:10.1093/nar/gkt1150

    Article  PubMed  CAS  Google Scholar 

  • Esquerré T, Bouvier M, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M (2016) The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Sci Rep 6:25057. doi:10.1038/srep25057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152. doi:10.1128/IAI.01386-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63:3205–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537. doi:10.1038/75398

    Article  CAS  PubMed  Google Scholar 

  • Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278(47):46446–46451

  • Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, Gosset G (2013) Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb Cell Factories 12:42. doi:10.1186/1475-2859-12-42

    Article  CAS  Google Scholar 

  • Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A (2014) Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 13:1472–1483. doi:10.1128/EC.00189-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner JG, Escalante-Semerena JC (2008) Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme A synthetase (AcsA) in Bacillus subtilis. J Bacteriol 190:5132–5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292(80):2314–2316. doi:10.1126/science.1059361

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi:10.1126/science.1124234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleiser IE, Bauer S (1981) Growth of E. coli W to high cell concentration by oxygen level linked control of carbon source concentration. Biotechnol Bioeng 23:1015–1021. doi:10.1002/bit.260230509

    Article  CAS  Google Scholar 

  • Godoy MS, Nikel PI, Cabrera Gomez JG, Pettinari MJ (2015) The CreC regulator of Escherichia coli, a new target for metabolic manipulations. Appl Environ Microbiol 82:244–254. doi:10.1128/AEM.02984-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonçalves GAL, Prazeres DMF, Monteiro GA, Prather KLJ (2013) De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 97:611–620. doi:10.1007/s00253-012-4308-5

    Article  PubMed  CAS  Google Scholar 

  • Hädicke O, Bettenbrock K, Klamt S (2015) Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng 112:2195–2199. doi:10.1002/bit.25623

    Article  PubMed  CAS  Google Scholar 

  • Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187. doi:10.1371/journal.ppat.1001187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han K, Lim HC, Hong J (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671. doi:10.1002/bit.260390611

    Article  CAS  PubMed  Google Scholar 

  • Hang S, Purdy AE, Robins WP, Wang Z, Mandal M, Chang S, Mekalanos JJ, Watnick PI (2014) The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. Cell Host Microbe 16:592–604. doi:10.1016/j.chom.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22. doi:10.1093/dnares/8.1.11

    Article  CAS  PubMed  Google Scholar 

  • Hayden JD, Brown LR, Gunawardena HP, Perkowski EF, Chen X, Braunstein M (2013) Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology 159:1986–1999. doi:10.1099/mic.0.068585-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentchel KL, Thao S, Intile PJ, Escalante-Semerena JC (2015) Deciphering the regulatory circuitry that controls reversible lysine acetylation in Salmonella enterica. MBio. doi:10.1128/mBio.00891-15

    PubMed  PubMed Central  Google Scholar 

  • Herold S, Paton JC, Srimanote P, Paton AW (2009) Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiology 155:3554–3563. doi:10.1099/mic.0.029454-0

    Article  CAS  PubMed  Google Scholar 

  • Horne SM, Mattson KR, Prüss BM (2009) An Escherichia coli aer mutant exhibits a reduced ability to colonize the streptomycin-treated mouse large intestine. Antonie Van Leeuwenhoek 95:149–158. doi:10.1007/s10482-008-9298-z

    Article  CAS  PubMed  Google Scholar 

  • Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol 11:784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung C-C, Eade CR, Altier C (2016) The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol Microbiol. doi:10.1111/mmi.13451

    PubMed  Google Scholar 

  • Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi S-H, Couloux A, Lee S-W, Yoon SH, Cattolico L, Hur C-G, Park H-S, Ségurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652. doi:10.1016/j.jmb.2009.09.052

    Article  CAS  PubMed  Google Scholar 

  • Kaas RS, Friis C, Ussery DW, Aarestrup FM (2012) Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577. doi:10.1186/1471-2164-13-577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakuda H, Hosono K, Shiroishi K, Ichihara S (1994) Identification and characterization of ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J Biochem 116:916–922

    CAS  PubMed  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. doi:10.1038/nrmicro818

    Article  CAS  PubMed  Google Scholar 

  • Karp PD, Weaver D, Paley S, Fulcher C, Kubo A, Kothari A, Krummenacker M, Subhraveti P, Weerasinghe D, Gama-Castro S, Huerta AM, Muñiz-Rascado L, Bonavides-Martinez C, Weiss V, Peralta-Gil M, Santos-Zavaleta A, Schröder I, Mackie A, Gunsalus R, Collado-Vides J, Keseler IM, Paulsen I (2014) The EcoCyc Database. EcoSal Plus. doi:10.1128/ecosalplus.ESP-0009-2013

    PubMed  PubMed Central  Google Scholar 

  • Kentner D, Martano G, Callon M, Chiquet P, Brodmann M, Burton O, Wahlander A, Nanni P, Delmotte N, Grossmann J, Limenitakis J, Schlapbach R, Kiefer P, Vorholt JA, Hiller S, Bumann D (2014) Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc Natl Acad Sci U S A 111:9929–9934. doi:10.1073/pnas.1406694111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-S, Jung H-M, Kim S-Y, Zhang L, Li J, Sigdel S, Park J-H, Haw J-R, Lee J-K (2015) Reduction of acetate and lactate contributed to enhancement of a recombinant protein production in E. coli BL21. J Microbiol Biotechnol 25:1093–1100. doi:10.4014/jmb.1503.03023

    Article  CAS  PubMed  Google Scholar 

  • Knappe J, Sawers G (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 6:383–398

    CAS  PubMed  Google Scholar 

  • Kosono S, Tamura M, Suzuki S, Kawamura Y, Yoshida A, Nishiyama M, Yoshida M (2015) Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLoS One 10:e0131169. doi:10.1371/journal.pone.0131169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J (2015) Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28:28–42. doi:10.1016/j.ymben.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  • Kuhn ML, Zemaitaitis B, Hu LI, Sahu A, Sorensen D, Minasov G, Lima BP, Scholle M, Mrksich M, Anderson WF, Gibson BW, Schilling B, Wolfe AJ (2014) Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One 9:e94816. doi:10.1371/journal.pone.0094816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari S, Beatty CM, Browning DF, Busby SJW, Simel EJ, Hovel-Miner G, Wolfe AJ (2000a) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Simel EJ, Wolfe AJ (2000b) ς70 is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:551–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landwall P, Holme T (1977) Influence of glucose and dissolved oxygen concentrations on yields of Escherichia coli B in dialysis culture. J Gen Microbiol 103:353–358

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Chang HN (1993) High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol Lett 15:971–974. doi:10.1007/BF00131766

    Article  CAS  Google Scholar 

  • Li Z, Nimtz M, Rinas U (2014) The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Factories 13:45. doi:10.1186/1475-2859-13-45

    Article  CAS  Google Scholar 

  • Lima BP, Thanh Huyen TT, Bäsell K, Becher D, Antelmann H, Wolfe AJ (2012) Inhibition of acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase. J Biol Chem 287:32147–32160. doi:10.1074/jbc.M112.365502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Castro N, Bennett G, San K-Y (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol 71:870–874. doi:10.1007/s00253-005-0230-4

    Article  CAS  PubMed  Google Scholar 

  • Lorca GL, Ezersky A, Lunin VV, Walker JR, Altamentova S, Evdokimova E, Vedadi M, Bochkarev A, Savchenko A (2007) Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J Biol Chem 282(22):16476–16491

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. doi:10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  • Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720. doi:10.1007/s00248-010-9717-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynnes T, Prüss BM, Samanta P (2013) Acetate metabolism and Escherichia coli biofilm: new approaches to an old problem. FEMS Microbiol Lett 344:95–103. doi:10.1111/1574-6968.12174

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Wood TK (2011) Protein acetylation in prokaryotes increases stress resistance. Biochem Biophys Res Commun 410:846–851. doi:10.1016/j.bbrc.2011.06.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64

    CAS  PubMed  Google Scholar 

  • Maloy SR, Nunn WD (1982) Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 49(1):173–180

  • Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, Razzazi-Fazeli E, Striedner G (2013) A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 8:e70516. doi:10.1371/journal.pone.0070516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques JC, Oh IK, Ly DC, Lamosa P, Ventura MR, Miller ST, Xavier KB (2014) LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2. Proc Natl Acad Sci U S A 111:14235–14240. doi:10.1073/pnas.1408691111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, Feist AM, Palsson BØ (2013) Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A 110:20338–20343. doi:10.1073/pnas.1307797110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin M, Ropers D, Letisse F, Laguerre S, Portais J-C, Cocaign-Bousquet M, Enjalbert B (2016) The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli. Mol Microbiol 100:686–700. doi:10.1111/mmi.13343

    Article  CAS  PubMed  Google Scholar 

  • Nambi S, Basu N, Visweswariah S (2010) cAMP-regulated protein lysine acetylases in mycobacteria. J Biol Chem 285:24313–24323. doi:10.1074/jbc.M110.118398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrete A, Shiloach J (2015) Constitutive expression of the sRNA GadY decreases acetate production and improves E. coli growth. Microb Cell Factories 14:148. doi:10.1186/s12934-015-0334-1

    Article  CAS  Google Scholar 

  • Negrete A, Majdalani N, Phue J-N, Shiloach J (2013) Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. New Biotechnol 30:269–273. doi:10.1016/j.nbt.2011.11.007

    Article  CAS  Google Scholar 

  • Niu D, Tian K, Prior BA, Wang M, Wang Z, Lu F, Singh S (2014) Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth. Microb Cell Factories 13:78. doi:10.1186/1475-2859-13-78

    Article  CAS  Google Scholar 

  • Noronha SB, Yeh HJ, Spande TF, Shiloach J (2000) Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS. Biotechnol Bioeng 68:316–327

    Article  CAS  PubMed  Google Scholar 

  • Pan JG, Rhee JS, Lebeault JM (1987) Physiological constraints in increasing biomass concentration of Escherichia coli B in fed-batch culture. Biotechnol Lett 9:89–94. doi:10.1007/BF01032744

    Article  CAS  Google Scholar 

  • Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, Vilu R (2014) Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5613-y

    PubMed  Google Scholar 

  • Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, Vilu R (2015) Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol BioSyst 11:1184–1193. doi:10.1039/c4mb00721b

    Article  CAS  PubMed  Google Scholar 

  • Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phue J-N, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30. doi:10.1016/j.jbiotec.2003.10.038

    Article  CAS  PubMed  Google Scholar 

  • Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E-coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E-coli B as determined by microarrays and northern blot analyses. Biotechnol Bioeng 90:805–820

  • Ren J, Sang Y, Ni J, Tao J, Lu J, Zhao M, Yao Y-F (2015) Acetylation regulates survival of Salmonella typhimurium in acid stress. Appl Environ Microbiol. doi:10.1128/AEM.01009-15

    Google Scholar 

  • Ren J, Sang Y, Tan Y, Tao J, Ni J, Liu S, Fan X, Zhao W, Lu J, Wu W, Yao Y-F (2016) Acetylation of lysine 201 inhibits the DNA-binding ability of PhoP to regulate Salmonella virulence. PLoS Pathog 12:e1005458. doi:10.1371/journal.ppat.1005458

    Article  PubMed  PubMed Central  Google Scholar 

  • Renilla S, Bernal V, Fuhrer T, Castaño-Cerezo S, Pastor JM, Iborra JL, Sauer U, Cánovas M (2012) Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures. Appl Microbiol Biotechnol 95:2109–2124. doi:10.1007/s00253-011-3536-4

    Article  CAS  Google Scholar 

  • Sandén AM, Prytz I, Tubulekas I, Förberg C, Le H, Hektor A, Neubauer P, Pragai Z, Harwood C, Ward A, Picon A, De Mattos JT, Postma P, Farewell A, Nyström T, Reeh S, Pedersen S, Larsson G (2003) Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol Bioeng 81:158–166. doi:10.1002/bit.10457

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Ren J, Ni J, Tao J, Lu J, Yao Y-F (2016) Protein acetylation is involved in Salmonella enterica Serovar typhimurium virulence. J Infect Dis. doi:10.1093/infdis/jiw028

    PubMed  Google Scholar 

  • Sá-Pessoa J, Paiva S, Ribas D, Silva IJ, Viegas SC, Arraiano CM, Casal M (2013) SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli. Biochem J 454:585–595. doi:10.1042/BJ20130412

    Article  PubMed  CAS  Google Scholar 

  • Schilling B, Christensen D, Davis R, Sahu AK, Hu LI, Walker-Peddakotla A, Sorensen DJ, Zemaitaitis B, Gibson BW, Wolfe AJ (2015) Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol Microbiol. doi:10.1111/mmi.13161

    PubMed  Google Scholar 

  • Sclavi B, Beatty CM, Thach DS, Fredericks CE, Buckle M, Wolfe AJ (2007) The multiple roles of CRP at the complex acs promoter depend on activation region 2 and IHF. Mol Microbiol 65:425–440. doi:10.1111/j.1365-2958.2007.05797.x

    Article  CAS  PubMed  Google Scholar 

  • Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–1102. doi:10.1126/science.1192588

    Article  CAS  PubMed  Google Scholar 

  • Shalel-Levanon S, San KY, Bennett GN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and glycolysis pathway in Escherichia coli under growth conditions. Biotechnol Bioeng 92:147–159

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Kaufman J, Guillard AS, Fass R (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambda DE3) and Escherichia coli JM109. Biotechnol Bioeng 49:421–428

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Reshamwala S, Noronha SB, Negrete A (2010) Analyzing metabolic variations in different bacterial strains, historical perspectives and current trends—example E. coli. Curr Opin Biotechnol 21:21–26

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Song SG, Lee DS, Pan JG, Park C (1997) Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol Lett 146(1):103–108

  • Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, Nielsen J (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci Rep 3:2532. doi:10.1038/srep02532

    Article  PubMed  PubMed Central  Google Scholar 

  • Son Y-J, Phue J-N, Trinh LB, Lee SJ, Shiloach J (2011) The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth. Microb Cell Factories 10:52. doi:10.1186/1475-2859-10-52

    Article  CAS  Google Scholar 

  • Sprenger GA (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61(16):2020–2030

  • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392. doi:10.1126/science.1077650

    Article  CAS  PubMed  Google Scholar 

  • Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC (2004) A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr Opin Microbiol 7:115–119

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J Mol Biol 394:653–680. doi:10.1016/j.jmb.2009.09.021

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose S, Mobley HLT (2015) Virulence and fitness determinants of uropathogenic Escherichia coli. Microbiol Spectr 3(4). doi: 10.1128/microbiolspec.UTI-0015-2012

  • Sunnarborg A, Klumpp D, Chung T, LaPorte DC (1990) Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol 172(5):2642–2649

  • Thao S, Escalante-Semerena JC (2011) Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric Nε-lysine acetyltransferase involved in carbon and energy metabolism. MBio. doi:10.1128/mBio.00216-11

    PubMed  PubMed Central  Google Scholar 

  • Thao S, Chen C-S, Zhu H, Escalante-Semerena JC (2010) Nε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity. PLoS One 5:e15123. doi:10.1371/journal.pone.0015123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Saint RC, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344. doi:10.1371/journal.pgen.1000344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. doi:10.1038/nature11552

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Guo S-J, Chen C-S, Liu C-X, Jiang H-W, Ge F, Deng J-Y, Zhou Y-M, Czajkowsky DM, Li Y, Qi B-R, Ahn Y-H, Cole PA, Zhu H, Tao S-C (2015) YcgC represents a new protein deacetylase family in prokaryotes. Elife 4:e05322. doi:10.7554/eLife.05322

    PubMed  PubMed Central  Google Scholar 

  • Usui Y, Hirasawa T, Furusawa C, Shirai T, Yamamoto N, Mori H, Shimizu H (2012) Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13C metabolic flux analysis. Microb Cell Factories 11:87. doi:10.1186/1475-2859-11-87

    Article  CAS  Google Scholar 

  • Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72:3653–3661. doi:10.1128/aem.72.5.3653-3661.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquie-Moreno M, Heijnen J, Charlier D, Soetaert W (2011) Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K-12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waegeman H, Maertens J, Beauprez J, De Mey M, Soetaert W (2012) Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21 (DE3). Biotechnol Lett 34:329–337. doi:10.1007/s10529-011-0774-6

    Article  CAS  PubMed  Google Scholar 

  • Waegeman H, De Lausnay S, Beauprez J, Maertens J, De Mey M, Soetaert W (2013) Increasing recombinant protein production in Escherichia coli K12 through metabolic engineering. New Biotechnol 30:255–261. doi:10.1016/j.nbt.2011.11.008

    Article  CAS  Google Scholar 

  • Walsh K, Koshland DE Jr (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J Biol Chem 259(15):9646–9654

  • Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T (2000) Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182:1632–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert BTTT, Iesmantavicius V, Wagner SAAA, Schölz C, Gummesson B, Beli P, Nyström T, Choudhary C, Scho C, Nystro T (2013) Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 51:1–8. doi:10.1016/j.molcel.2013.06.003

    Article  CAS  Google Scholar 

  • Weinert BT, Moustafa T, Iesmantavicius V, Zechner R, Choudhary C (2015) Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. doi:10.15252/embj.201591271

    PubMed  PubMed Central  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe AJ (2016) Bacterial protein acetylation: new discoveries unanswered questions. Curr Genet 62(2):335–341. doi:10.1007/s00294-015-0552-4

    Article  CAS  PubMed  Google Scholar 

  • Wong MS, Wu S, Causey TB, Bennett GN, San K-Y (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108. doi:10.1016/j.ymben.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T (2013) Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500:301–306. doi:10.1038/nature12446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu C-F, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Prot 8:215–225

    Article  CAS  Google Scholar 

  • Zhao K, Chai X, Marmorstein R (2004) Structure and substrate binding properties of CobB, a Sir2 homolog protein deacetylase from Escherichia coli. J Mol Biol 337:731–741

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Shimizu K, Zhu HF, Shimizu K (2005) Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng 7:104–115. doi:10.1016/j.ymben.2004.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Castaño-Cerezo is recipient of a PhD fellowship from Fundación Séneca (CARM, Murcia). This work has been funded by MICINN BIO2011-29233-C02-01, MINECO BIO2014-54411-C2-1-R both including FEDER Funds and partly by Fundación Séneca-CARM 08660/PI/08 and 19236/PI/14 projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicente Bernal or Manuel Cánovas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, V., Castaño-Cerezo, S. & Cánovas, M. Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Appl Microbiol Biotechnol 100, 8985–9001 (2016). https://doi.org/10.1007/s00253-016-7832-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7832-x

Keywords

Navigation