Skip to main content
Log in

Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, the application of pesticide biodegradation in remediation of pesticide-contaminated matrices moved from remediating bulk soil to remediating and mitigating pesticide pollution of groundwater and surface water bodies. Specialized pesticide-degrading microbial populations are used, which can be endogenous to the ecosystem of interest or introduced by means of bioaugmentation. It involves (semi-)natural ecosystems like agricultural fields, vegetated filter strips, and riparian wetlands and man-made ecosystems like on-farm biopurification systems, groundwater treatment systems, and dedicated modules in drinking water treatment. Those ecosystems and applications impose challenges which are often different from those associated with bulk soil remediation. These include high or extreme low pesticide concentrations, mixed contamination, the presence of alternative carbon sources, specific hydraulic conditions, and spatial and temporal variation. Moreover, for various indicated ecosystems, limited knowledge exists about the microbiota present and their physiology and about the in situ degradation kinetics. This review reports on the current knowledge on applications of biodegradation in mitigating and remediating freshwater pesticide contamination. Attention is paid to the challenges involved and current knowledge gaps for improving those applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agudelo RM, Penuela G, Aguirre NJ, Morato J, Jaramillo ML (2010) Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands. Ecol Eng 36:1401–1408. doi:10.1016/j.ecoleng.2010.06.019

    Article  Google Scholar 

  • Albers CN, Feld L, Ellegaard-Jensen L, Aamand J (2015) Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Water Res 83:61–70. doi:10.1016/j.watres.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  • Albers CN, Jacobsen OS, Aamand J (2014) Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters—initial adhesion and BAM degradation potentials. Appl Microbiol Biotechnol 98:957–967. doi:10.1007/s00253-013-4942-6

    Article  CAS  PubMed  Google Scholar 

  • Anderson KL, Wheeler KA, Robinson JB, Tuovinen OH (2002) Atrazine mineralization potential in two wetlands. Water Res 36:4785–4794. doi:10.1016/s0043-1354(02)00209-9

    Article  CAS  PubMed  Google Scholar 

  • Arildskov NP, Pedersen PG, Albrechtsen HJ (2001) Fate of the herbicides 2,4,5-T, atrazine, and DNOC in a shallow, anaerobic aquifer investigated by in situ passive diffusive emitters and laboratory batch experiments. Groundwater 39:819–830. doi:10.1111/j.1745-6584.2001.tb02470.x

    Article  CAS  Google Scholar 

  • Aslan S (2005) Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system. Process Biochem 40:417–424. doi:10.1016/j.procbio.2004.01.030

    Article  CAS  Google Scholar 

  • Aslan S, Turkman AE (2005) Combined biological removal of nitrate and pesticides using wheat straw as substrates. Process Biochem 40:935–943. doi:10.1016/j.procbio.2004.02.020

    Article  CAS  Google Scholar 

  • Badea S-L, Vogt C, Weber S, Danet A-F, Richnow H-H (2009) Stable isotope fractionation of γ-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ Sci Technol 43:3155–3161. doi:10.1021/es801284m

    Article  CAS  PubMed  Google Scholar 

  • Baelum J, Nicolaisen MH, Holben WE, Strobel BW, Sorensen J, Jacobsen CS (2008) Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J 2:677–687. doi:10.1038/ismej.2008.21

    Article  CAS  PubMed  Google Scholar 

  • Baelum J, Prestat E, David MM, Strobel BW, Jacobsen CS (2012) Modeling of phenoxy acid herbicide mineralization and growth of microbial degraders in 15 soils monitored by quantitative real-time PCR of the functional tfdA gene. Appl Environ Microbiol 78:5305–5312. doi:10.1128/aem.00990-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barra Caracciolo A, Fajardo C, Grenni P, Saccà ML, Amalfitano S, Ciccoli R, Martin M, Gibello A (2010) The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiol Ecol 71:127–136. doi:10.1111/j.1574-6941.2009.00787.x

    Article  CAS  Google Scholar 

  • Barreiros L, Manaia CM, Nunes OC (2011) Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate. Biodegradation 22:445–461. doi:10.1007/s10532-010-9417-1

    Article  CAS  PubMed  Google Scholar 

  • Barriuso E, Benoit P, Dubus IG (2008) Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environ Sci Technol 42:1845–1854. doi:10.1021/es7021736

    Article  CAS  PubMed  Google Scholar 

  • Batıoğlu-Pazarbaşı M, Bælum J, Johnsen AR, Sørensen SR, Albrechtsen H-J, Aamand J (2012) Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes. FEMS Microbiol Ecol 80:331–341. doi:10.1111/j.1574-6941.2012.01300.x

    Article  PubMed  CAS  Google Scholar 

  • Battaglin WA, Meyer MT, Kuivila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. J Am Water Resour Assoc 50:275–290. doi:10.1111/jawr.12159

    Article  CAS  Google Scholar 

  • Belden JB, Coats JR (2004) Effect of grasses on herbicide fate in the soil column: infiltration of runoff, movement, and degradation. Environ Toxicol Chem 23:2251–2258. doi:10.1897/03-422

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Lincoln SD, Sorensen SR, Morgan JAW, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69:827–834. doi:10.1128/aem.69.2.827-834.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benner J, Helbling DE, Kohler H-PE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976. doi:10.1016/j.watres.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  • Bers K, Mot RD, Springael D (2013) In situ response of the linuron degradation potential to linuron application in an agricultural field. FEMS Microbiol Ecol 85:403–416. doi:10.1111/1574-6941.12129

    Article  CAS  PubMed  Google Scholar 

  • Bers K, Sniegowski K, Albers P, Breugelmans P, Hendrickx L, De Mot R, Springael D (2011) A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol Ecol 76:14–25. doi:10.1111/j.1574-6941.2010.01028.x

    Article  CAS  PubMed  Google Scholar 

  • Bers K, Sniegowski K, De Mot R, Springael D (2012) Dynamics of the linuron hydrolase libA gene pool size in response to linuron application and environmental perturbations in agricultural soil and on-farm biopurifications systems. Appl Environ Microbiol 78:2783–2789. doi:10.1128/aem.06991-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois P, Huguenot D, Norini M-P, Farhan Ul Haque M, Vuilleumier S, Lebeau T (2011) Herbicide degradation and copper complexation by bacterial mixed cultures from a vineyard stormwater basin. J Soils Sediments 11:860–873. doi:10.1007/s11368-011-0354-3

    Article  CAS  Google Scholar 

  • Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos JL (2008) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1:87–93. doi:10.1111/j.1751-7915.2007.00004.x

    PubMed  Google Scholar 

  • Briceno G, Palma G, Duran N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37:233–271. doi:10.1080/10643380600987406

    Article  CAS  Google Scholar 

  • Cáceres TP, Megharaj M, Malik S, Beer M, Naidu R (2009) Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater. Bioresour Technol 100:2732–2736. doi:10.1016/j.biortech.2008.12.043

    Article  PubMed  CAS  Google Scholar 

  • Carter JM, Thompson RF (2016) Pesticide concentrations in wetlands on the Lake Traverse Indian Reservation, South and North Dakota, July 2015. U. S. Geological Survey, Reston, VA. doi:10.3133/ds984

  • Cheyns K, Martin-Laurent F, Bru D, Aamand J, Vanhaecke L, Diels J, Merckx R, Smolders E, Springael D (2012) Long-term dynamics of the atrazine mineralization potential in surface and subsurface soil in an agricultural field as a response to atrazine applications. Chemosphere 86:1028–1034. doi:10.1016/j.chemosphere.2011.11.045

    Article  CAS  PubMed  Google Scholar 

  • Cheyns K, Mertens J, Diels J, Smolders E, Springael D (2010) Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: implications for pesticide fate modelling. Environ Pollut 158:1405–1411. doi:10.1016/j.envpol.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  • Clausen GB, Larsen L, Johnsen K, de Lipthay JR, Aamand J (2002) Quantification of the atrazine-degrading Pseudomonas sp. strain ADP in aquifer sediment by quantitative competitive polymerase chain reaction. FEMS Microbiol Ecol 41:221–229. doi:10.1111/j.1574-6941.2002.tb00983.x

    Article  CAS  PubMed  Google Scholar 

  • Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202. doi:10.1016/j.soilbio.2009.10.016

    Article  CAS  Google Scholar 

  • de Lipthay JR, Sørensen SR, Aamand J (2007) Effect of herbicide concentration and organic and inorganic nutrient amendment on the mineralization of mecoprop, 2,4-D and 2,4,5-T in soil and aquifer samples. Environ Pollut 148:83–93. doi:10.1016/j.envpol.2006.11.005

    Article  PubMed  CAS  Google Scholar 

  • de Lipthay JR, Tuxen N, Johnsen K, Hansen LH, H-Jr A, Bjerg PL, Aamand J (2003) In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer. Appl Environ Microbiol 69:461–467. doi:10.1128/aem.69.1.461-467.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Wilde T, Spanoghe P, Debaer C, Ryckeboer J, Springael D, Jaeken P (2007) Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Manag Sci 63:111–128. doi:10.1002/ps.1323

    Article  PubMed  CAS  Google Scholar 

  • De Wilde T, Spanoghe P, Sniegowksi K, Ryckeboer J, Jaeken P, Springael D (2010) Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material. Chemosphere 78:56–60. doi:10.1016/j.chemosphere.2009.10.011

    Article  PubMed  CAS  Google Scholar 

  • Dealtry S, Holmsgaard PN, Dunon V, Jechalke S, Ding G-C, Krögerrecklenfort E, Heuer H, Hansen LH, Springael D, Zühlke S, Sørensen SJ, Smalla K (2014) Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year. Appl Environ Microbiol 80:4012–4020. doi:10.1128/aem.04016-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dealtry S, Nour EH, Holmsgaard PN, Ding G-C, Weichelt V, Dunon V, Heuer H, Hansen LH, Sørensen SJ, Springael D, Smalla K (2016) Exploring the complex response to linuron of bacterial communities from biopurification systems by means of cultivation-independent methods. FEMS Microbiol Ecol 92. doi:10.1093/femsec/fiv157

  • Dechesne A, Badawi N, Aamand J, Smets BF (2014) Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 5:667. doi:10.3389/fmicb.2014.00667

    Article  PubMed  PubMed Central  Google Scholar 

  • Dejonghe W, Goris J, El Fantroussi S, Hofte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304. doi:10.1128/aem.66.8.3297-3304.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Pilar CM, Torstensson L (2007) Effect of biobed composition, moisture, and temperature on the degradation of pesticides. J Agric Food Chem 55:5725–5733. doi:10.1021/jf0707637

    Article  CAS  Google Scholar 

  • Dunon V, Sniegowski K, Bers K, Lavigne R, Smalla K, Springael D (2013) High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiol Ecol 86:415–431. doi:10.1111/1574-6941.12173

    Article  CAS  PubMed  Google Scholar 

  • Egli T (1995) The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. In: Jones JG (ed) Advances in microbial ecology. Springer US, Boston, MA, pp. 305–386. doi:10.1007/978-1-4684-7724-5_8

    Chapter  Google Scholar 

  • El Sebai T, Devers-Lamrani M, Lagacherie B, Rouard N, Soulas G, Martin-Laurent F (2011) Isoproturon mineralization in an agricultural soil. Biol Fertil Soils 47:427–435. doi:10.1007/s00374-011-0549-1

    Article  CAS  Google Scholar 

  • Eqani S, Malik RN, Alamdar A, Faheem H (2012) Status of organochlorine contaminants in the different environmental compartments of Pakistan: a review on occurrence and levels. Bull Environ Contam Toxicol 88:303–310. doi:10.1007/s00128-011-0496-4

    Article  CAS  Google Scholar 

  • Feakin SJ, Blackburn E, Burns RG (1994) Biodegradation of s-triazine herbicides at low concentrations in surface waters. Water Res 28:2289–2296. doi:10.1016/0043-1354(94)90044-2

    Article  CAS  Google Scholar 

  • Feakin SJ, Blackburn E, Burns RG (1995a) Inoculation of granular activated carbon in a fixed bed with s-triazine-degrading bacteria as a water treatment process. Water Res 29:819–825. doi:10.1016/0043-1354(94)00209-p

    Article  CAS  Google Scholar 

  • Feakin SJ, Gubbins B, McGhee I, Shaw LJ, Burns RG (1995b) Inoculation of granular activated carbon with s-triazine-degrading bacteria for water treatment at pilot-scale. Water Res 29:1681–1688. doi:10.1016/0043-1354(94)00322-x

    Article  CAS  Google Scholar 

  • Feld L, Nielsen TK, Hansen LH, Aamand J, Albers CN (2015) Establishment of bacterial herbicide degraders in a rapid sand filter for bioremediation of phenoxypropionate polluted groundwater. Appl Environ Microbiol 82:878–887. doi:10.1128/aem.02600-15

    Article  PubMed  CAS  Google Scholar 

  • Felsot AS, Mitchell JK, Dzantor EK (1994) Use of landfarming to remediate soil contaminated by pesticide waste. DIANE Publishing, Champaign, Illinois

    Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758. doi:10.1126/science.1236281

    Article  CAS  PubMed  Google Scholar 

  • FOCUS (2006) Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp

  • Fogg P, Boxall ABA, Walker A (2003a) Degradation of pesticides in biobeds: the effect of concentration and pesticide mixtures. J Agric Food Chem 51:5344–5349. doi:10.1021/jf030060z

    Article  CAS  PubMed  Google Scholar 

  • Fogg P, Boxall ABA, Walker A, Jukes AA (2003b) Pesticide degradation in a ‘biobed’ composting substrate. Pest Manag Sci 59:527–537. doi:10.1002/ps.685

    Article  CAS  PubMed  Google Scholar 

  • Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc B 358:1957–1972. doi:10.1098/rstb.2003.1380

    Article  CAS  Google Scholar 

  • Franzmann PD, Zappia LR, Tilbury AL, Patterson BM, Davis GB, Mandelbaum RT (2000) Bioaugmentation of atrazine and fenamiphos impacted groundwater: laboratory evaluation. Biorem J 4:237–248. doi:10.1080/10588330008951112

    Article  CAS  Google Scholar 

  • Gan J, Zhu Y, Wilen C, Pittenger D, Crowley D (2003) Effect of planting covers on herbicide persistence in landscape soils. Environ Sci Technol 37:2775–2779. doi:10.1021/es026259u

    Article  CAS  PubMed  Google Scholar 

  • Gazitua MC, Slater AW, Melo F, Gonzalez B (2010) Novel alpha-ketoglutarate dioxygenase tfdA-related genes are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environ Microbiol 12:2411–2425. doi:10.1111/j.1462-2920.2010.02215.x

    Article  CAS  PubMed  Google Scholar 

  • Gebremariam SY, Beutel MW (2010) Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms. Chemosphere 78:1337–1341. doi:10.1016/j.chemosphere.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Gibson SA, Suflita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol 56:1825–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gözdereliler E, Boon N, Aamand J, De Roy K, Granitsiotis MS, Albrechtsen H-J, Sørensen SR (2013) Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. Appl Environ Microbiol 79:367–375. doi:10.1128/aem.02536-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grundmann S, Fuss R, Schmid M, Laschinger M, Ruth B, Schulin R, Munch JC, Schroll R (2007) Application of microbial hot spots enhances pesticide degradation in soils. Chemosphere 68:511–517. doi:10.1016/j.chemosphere.2006.12.065

    Article  CAS  PubMed  Google Scholar 

  • Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142. doi:10.1016/j.biortech.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  • Haag D, Kaupenjohann M (2001) Landscape fate of nitrate fluxes and emissions in Central Europe—a critical review of concepts, data, and models for transport and retention. Agric Ecosyst Environ 86:1–21. doi:10.1016/s0167-8809(00)00266-8

    Article  CAS  Google Scholar 

  • Harrison I, Leader RU, Higgo JJW, Williams GM (1998) A study of the degradation of phenoxyacid herbicides at different sites in a limestone aquifer. Chemosphere 36:1211–1232. doi:10.1016/S0045-6535(97)10043-1

    Article  CAS  PubMed  Google Scholar 

  • Harrison I, Williams GM, Carlick CA (2003) Enantioselective biodegradation of mecoprop in aerobic and anaerobic microcosms. Chemosphere 53:539–549. doi:10.1016/S0045-6535(03)00456-9

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard MJ, Albrechtsen HJ (2014) Microbial pesticide removal in rapid sand filters for drinking water treatment—potential and kinetics. Water Res 48:71–81. doi:10.1016/j.watres.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  • Helbling DE (2015) Bioremediation of pesticide-contaminated water resources: the challenge of low concentrations. Curr Opin Biotechnol 33:142–148. doi:10.1016/j.copbio.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  • Helbling DE, Hammes F, Egli T, Kohler H-PE (2014) Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon. Appl Environ Microbiol 80:1306–1313. doi:10.1128/aem.03622-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154:155–168. doi:10.1016/j.envpol.2007.09.020

    Article  CAS  PubMed  Google Scholar 

  • Holvoet KMA, Seuntjens P, Vanrolleghem PA (2007) Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Model 209:53–64. doi:10.1016/j.ecolmodel.2007.07.030

    Article  CAS  Google Scholar 

  • Horemans B, Bers K, Romero ER, Pose Juan E, Dunon V, De Mot R, Springael D (2016) Functional redundancy of linuron degradation in microbial communities of agricultural soil and biopurification systems. Appl Environ Microbiol. doi:10.1128/aem.04018-15

    PubMed  Google Scholar 

  • Horemans B, Vandermaesen J, Vanhaecke L, Smolders E, Springael D (2013) Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source. Appl Microbiol Biotechnol 97:9837–9846. doi:10.1007/s00253-013-4690-7

    Article  CAS  PubMed  Google Scholar 

  • Huggenberger F, Letey J, Farmer WJ (1973) Adsorption and mobility of pesticides in soil. Calif Agric 27:8–10

    CAS  Google Scholar 

  • Hussain S, Arshad M, Springael D, SøRensen SR, Bending GD, Devers-Lamrani M, Maqbool Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45:1947–1998. doi:10.1080/10643389.2014.1001141

    Article  CAS  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362. doi:10.1016/j.chemosphere.2008.09.062

    Article  CAS  PubMed  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30. doi:10.1016/j.ejsobi.2011.11.010

    Article  CAS  Google Scholar 

  • Janniche GS, Lindberg E, Mouvet C, Albrechtsen HJ (2010) Mineralization of isoproturon, mecoprop and acetochlor in a deep unsaturated limestone and sandy aquifer. Chemosphere 81:823–831. doi:10.1016/j.chemosphere.2010.08.023

    Article  CAS  PubMed  Google Scholar 

  • Janniche GS, Mouvet C, Albrechtsen HJ (2011) Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer. J Contam Hydrol 123:167–177. doi:10.1016/j.jconhyd.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Jin XH, Peldszus S (2012) Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach. Sci Total Environ 414:653–663. doi:10.1016/j.scitotenv.2011.11.035

    Article  CAS  PubMed  Google Scholar 

  • Johnson DR, Helbling DE, Men Y, Fenner K (2015) Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products? Environ Sci Water Res Technol 1:272–278. doi:10.1039/c5ew00016e

    Article  CAS  Google Scholar 

  • Jones LR, Owen SA, Horrell P, Burns RG (1998) Bacterial inoculation of granular activated carbon filters for the removal of atrazine from surface water. Water Res 32:2542–2549. doi:10.1016/s0043-1354(97)00458-2

    Article  CAS  Google Scholar 

  • Kalin RM (2004) Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution. Curr Opin Microbiol 7:227–238. doi:10.1016/j.mib.2004.04.014

    Article  CAS  PubMed  Google Scholar 

  • Karanasios E, Karpouzas DG, Tsiropoulos NG (2012a) Key parameters and practices controlling pesticide degradation efficiency of biobed substrates. J Environ Sci Health B 47:589–598. doi:10.1080/03601234.2012.665753

    Article  CAS  PubMed  Google Scholar 

  • Karanasios E, Tsiropoulos NG, Karpouzas DG (2012b) On-farm biopurification systems for the depuration of pesticide wastewaters: recent biotechnological advances and future perspectives. Biodegradation 23:787–802. doi:10.1007/s10532-012-9571-8

    Article  CAS  PubMed  Google Scholar 

  • Karas P, Metsoviti A, Zisis V, Ehaliotis C, Omirou M, Papadopoulou ES, Menkissoglou-Spiroudi U, Manta S, Komiotis D, Karpouzas DG (2015) Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Sci Total Environ 530–531:129–139. doi:10.1016/j.scitotenv.2015.05.086

    Article  PubMed  CAS  Google Scholar 

  • Kidmose J, Dahl M, Engesgaard P, Nilsson B, Christensen BSB, Andersen S, Hoffmann CC (2010) Experimental and numerical study of the relation between flow paths and fate of a pesticide in a riparian wetland. J Hydrol 386:67–79. doi:10.1016/j.jhydrol.2010.03.006

    Article  CAS  Google Scholar 

  • Kinnunen M, Dechesne A, Proctor C, Hammes F, Johnson D, Quintela-Baluja M, Graham D, Daffonchio D, Fodelianakis S, Hahn N, Boon N, Smets BF (2016) A conceptual framework for invasion in microbial communities. ISME J. doi:10.1038/ismej.2016.75

    PubMed  Google Scholar 

  • Klecka GM, Rick DL, Witt ME, Ritalahti K, Marsh TL (2010) Natural biological attenuation of phenoxy herbicides in groundwater: Dow AgroSciences Paritutu site, New Zealand. Biorem J 5:79–92. doi:10.1080/20018891079203

    Article  Google Scholar 

  • Klint M, Arvin E, Jensen BK (1993) Degradation of the pesticides mecoprop and atrazine in unpolluted sandy aquifers. J Environ Qual 22:262–266. doi:10.2134/jeq1993.00472425002200020005x

    Article  CAS  Google Scholar 

  • Komárek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151. doi:10.1016/j.envint.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570. doi:10.1016/j.envpol.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  • Korade DL, Fulekar MH (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350. doi:10.1016/j.jhazmat.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  • Krüger US, Johnsen AR, Burmolle M, Aamand J, Sorensen SR (2015) The potential for bioaugmentation of sand filter materials from waterworks using bacterial cultures degrading 4-chloro-2-methylphenoxyacetic acid. Pest Manag Sci 71:257–265. doi:10.1002/ps.3796

    Article  PubMed  CAS  Google Scholar 

  • Krutz LJ, Gentry TJ, Senseman SA, Pepper IL, Tierney DP (2006) Mineralisation of atrazine, metolachlor and their respective metabolites in vegetated filter strip and cultivated soil. Pest Manag Sci 62:505–514. doi:10.1002/ps.1193

    Article  CAS  PubMed  Google Scholar 

  • Krutz LJ, Shaner DL, Accinelli C, Zablotowicz RM, Henry WB (2008) Atrazine dissipation in s-triazine-adapted and nonadapted soil from Colorado and Mississippi: implications of enhanced degradation on atrazine fate and transport parameters. J Environ Qual 37:848–857. doi:10.2134/jeq2007.0448

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Trefault N, Olaniran AO (2016) Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 42:194–208. doi:10.3109/1040841x.2014.917068

    CAS  PubMed  Google Scholar 

  • Kumar M, Philip L (2006) Bioremediation of endosulfan contaminated soil and water—optimization of operating conditions in laboratory scale reactors. J Hazard Mater 136:354–364. doi:10.1016/j.jhazmat.2005.12.023

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler H-PE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80. doi:10.1128/mmbr.00029-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster SH, Hollister EB, Senseman SA, Gentry TJ (2010) Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag Sci 66:59–64. doi:10.1002/ps.1831

    Article  CAS  PubMed  Google Scholar 

  • Larsen L, Aamand J (2001) Degradation of herbicides in two sandy aquifers under different redox conditions. Chemosphere 44:231–236. doi:10.1016/S0045-6535(00)00174-0

    Article  CAS  PubMed  Google Scholar 

  • Larsen L, Jorgensen C, Aamand J (2001) Potential mineralization of four herbicides in a ground water-fed wetland area. J Environ Qual 30:24–30. doi:10.2134/jeq2001.30124x

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Yang C, Gong M, Zhao Y, Zhang J, Zhu C, Jiang J, Li S (2011) Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. J Environ Manag 92:2229–2234. doi:10.1016/j.jenvman.2011.04.009

    Article  CAS  Google Scholar 

  • Lillis L, Clipson N, Doyle E (2010) Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS Microbiol Ecol 73:363–369. doi:10.1111/j.1574-6941.2010.00906.x

    CAS  PubMed  Google Scholar 

  • Lin C-H, Lerch RN, Kremer RJ, Garrett HE (2011) Stimulated rhizodegradation of atrazine by selected plant species. J Environ Qual 40:1113–1121. doi:10.2134/jeq2010.0440

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Helbling DE, Kohler H-PE, Smets BF (2014) A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes. Environ Sci Technol 48:13358–13366. doi:10.1021/es503491w

    Article  CAS  PubMed  Google Scholar 

  • Lizotte RE Jr, Shields FD Jr, Knight SS, Bryant CT (2009) Efficiency of a modified backwater wetland in trapping a pesticide mixture. Ecohydrology 2:287–293. doi:10.1002/eco.52

    Article  CAS  Google Scholar 

  • Lo C-C (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359. doi:10.1080/03601231003799804

    Article  CAS  PubMed  Google Scholar 

  • Maillard E, Imfeld G (2014) Pesticide mass budget in a stormwater wetland. Environ Sci Technol 48:8603–8611. doi:10.1021/es500586x

    Article  CAS  PubMed  Google Scholar 

  • Maillard E, Payraudeau S, Faivre E, Gregoire C, Gangloff S, Imfeld G (2011) Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci Total Environ 409:2317–2324. doi:10.1016/j.scitotenv.2011.01.057

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Lavanchy PM, Chen Z, Lünsmann V, Marin-Cevada V, Vilchez-Vargas R, Pieper DH, Reiche N, Kappelmeyer U, Imparato V, Junca H, Nijenhuis I, Müller JA, Kuschk P, Heipieper HJ (2015) Microbial toluene removal in hypoxic model constructed wetlands occurs predominantly via the ring monooxygenation pathway. Appl Environ Microbiol. doi:10.1128/aem.01822-15

    PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen H-J, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49:7073–7081. doi:10.1021/acs.est.5b00715

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Singh N, Kookana RS, Naidu R, Sethunathan N (2003) Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water. Appl Microbiol Biotechnol 61:252–256. doi:10.1007/s00253-002-1206-2

    Article  CAS  PubMed  Google Scholar 

  • Mersie W, McNamee C, Seybold C, Wu JG, Tierney D (2004) Degradation of metolachlor in bare and vegetated soils and in simulated water-sediment systems. Environ Toxicol Chem 23:2627–2632. doi:10.1897/04-60

    Article  CAS  PubMed  Google Scholar 

  • Moorman TB, Cowan JK, Arthur EL, Coats JR (2001) Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fertil Soils 33:541–545. doi:10.1007/s003740100367

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375. doi:10.1016/j.micres.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Mudhoo A, Garg VK (2011) Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere 21:11–25. doi:10.1016/S1002-0160(10)60074-4

    Article  CAS  Google Scholar 

  • Munoz-Leoz B, Garbisu C, Antigueedad I, Ruiz-Romera E (2012) Fertilization can modify the non-target effects of pesticides on soil microbial communities. Soil Biol Biochem 48:125–134. doi:10.1016/j.soilbio.2012.01.021

    Article  CAS  Google Scholar 

  • Nagata Y, Tabata M, Ohtsubo Y, Tsuda M (2015) Biodegradation of organochlorine pesticides. In: Yates M, Nakatsu C, Miller R, Pillai S (eds) Manual of environmental microbiology, Fourth edn. ASM Press, Washington, DC, pp. 5.1.2-1–5.1.2-30. doi:10.1128/9781555818821.ch5.1.2

    Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5:177–183. doi:10.5897/AJMR10.375

    Google Scholar 

  • Nijenhuis I, Kuntze K (2016) Anaerobic microbial dehalogenation of organohalides—state of the art and remediation strategies. Curr Opin Biotechnol 38:33–38. doi:10.1016/j.copbio.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  • Ning JY, Bai ZH, Gang G, Jiang D, Hu Q, He JZ, Zhang HX, Zhuang GQ (2010) Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere. FEMS Microbiol Lett 306:135–143. doi:10.1111/j.1574-6968.2010.01946.x

    Article  CAS  PubMed  Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17:88–105

    CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444. doi:10.1007/s11157-013-9320-4

    Article  CAS  Google Scholar 

  • Omirou M, Dalias P, Costa C, Papastefanou C, Dados A, Ehaliotis C, Karpouzas DG (2012) Exploring the potential of biobeds for the depuration of pesticide-contaminated wastewaters from the citrus production chain: laboratory, column and field studies. Environ Pollut 166:31–39. doi:10.1016/j.envpol.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  • Onneby K, Jonsson A, Stenstrom J (2010) A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms. Biodegradation 21:21–29. doi:10.1007/s10532-009-9278-7

    Article  PubMed  CAS  Google Scholar 

  • Passeport E, Benoit P, Bergheaud V, Coquet Y, Tournebize J (2011) Epoxiconazole degradation from artificial wetland and forest buffer substrates under flooded conditions. Chem Eng J 173:760–765. doi:10.1016/j.cej.2011.08.044

    Article  CAS  Google Scholar 

  • Patterson BM, Franzmann PD, Davis GB, Elbers J, Zappia LR (2002) Using polymer mats to biodegrade atrazine in groundwater: laboratory column experiments. J Contam Hydrol 54:195–213. doi:10.1016/S0169-7722(01)00178-4

    Article  CAS  PubMed  Google Scholar 

  • Pimmata P, Reungsang A, Plangklang P (2013) Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int Biodeterior Biodegrad 85:196–204. doi:10.1016/j.ibiod.2013.07.009

    Article  CAS  Google Scholar 

  • Piutti S, Marchand AL, Lagacherie B, Martin-Laurent F, Soulas G (2002) Effect of cropping cycles and repeated herbicide applications on the degradation of diclofopmethyl, bentazone, diuron, isoproturon and pendimethalin in soil. Pest Manag Sci 58:303–312. doi:10.1002/ps.459

    Article  CAS  PubMed  Google Scholar 

  • Polanska M, Huysman K, van Keer C (2005) Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water Res 39:2259–2266. doi:10.1016/j.watres.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  • Pothuluri JV, Moorman TB, Obenhuber DC, Wauchope RD (1990) Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile. J Environ Qual 19:525–530. doi:10.2134/jeq1990.00472425001900030029x

    Article  CAS  Google Scholar 

  • Rasmussen J, Aamand J, Rosenberg P, Jacobsen OS, Sorensen SR (2005) Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters. Pest Manag Sci 61:829–837. doi:10.1002/ps.1041

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rodríguez CE, Castro-Gutiérrez V, Chin-Pampillo JS, Ruiz-Hidalgo K (2013) On-farm biopurification systems: role of white rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiol Lett 345:1–12. doi:10.1111/1574-6968.12161

    Article  PubMed  CAS  Google Scholar 

  • Rosenbom AE, Binning PJ, Aamand J, Dechesne A, Smets BF, Johnsen AR (2014) Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil? Sci Total Environ 472:90–98. doi:10.1016/j.scitotenv.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  • Rouchaud J, Neus O, Bulcke R, Cools K, Eelen H, Dekkers T (2000) Soil dissipation of diuron, chlorotoluron, simazine, propyzamide, and diflufenican herbicides after repeated applications in fruit tree orchards. Arch Environ Contam Toxicol 39:60–65. doi:10.1007/s002440010080

    Article  CAS  PubMed  Google Scholar 

  • Runes HB, Jenkins JJ, Bottomley PJ (2001) Atrazine degradation by bioaugmented sediment from constructed wetlands. Appl Microbiol Biotechnol 57:427–432. doi:10.1007/s002530100792

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh GJ, Muñoz-Carpena R, Fox GA (2013) Distinct influence of filter strips on acute and chronic pesticide aquatic environmental exposure assessments across U.S. EPA scenarios. Chemosphere 90:195–202. doi:10.1016/j.chemosphere.2012.06.034

    Article  CAS  PubMed  Google Scholar 

  • Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115. doi:10.1016/j.envpol.2012.07.048

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. doi:10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  • Shalaby SEM, Abdou GY (2010) The influence of soil microorganisms and bio- or organic fertilizers on dissipation of some pesticides in soil and potato tubers. J Plant Prot Res 50:86–92. doi:10.2478/v10045-010-0015-3

    Article  CAS  Google Scholar 

  • Shati MR, Rönen D, Mandelbaum R (1996) Method for in situ study of bacterial activity in aquifers. Environ Sci Technol 30:2646–2653. doi:10.1021/es960117g

    Article  CAS  Google Scholar 

  • Sjøholm OR, Aamand J, Sørensen J, Nybroe O (2010a) Degrader density determines spatial variability of 2,6-dichlorobenzamide mineralisation in soil. Environ Pollut 158:292–298. doi:10.1016/j.envpol.2009.07.002

    Article  PubMed  CAS  Google Scholar 

  • Sjøholm OR, Nybroe O, Aamand J, Sorensen J (2010b) 2,6-dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions. Environ Pollut 158:3618–3625. doi:10.1016/j.envpol.2010.08.006

    Article  PubMed  CAS  Google Scholar 

  • Smalling KL, Reeves R, Muths E, Vandever M, Battaglin WA, Hladik ML, Pierce CL (2015) Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci Total Environ 502:80–90. doi:10.1016/j.scitotenv.2014.08.114

    Article  CAS  PubMed  Google Scholar 

  • Sniegowski K, Bers K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011a) Robust linuron degradation in on-farm biopurification systems exposed to sequential environmental changes. Appl Environ Microbiol 77:6614–6621. doi:10.1128/aem.05108-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski K, Bers K, Van Goetem K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011b) Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73. doi:10.1111/j.1574-6941.2010.01031.x

    Article  CAS  PubMed  Google Scholar 

  • Sniegowski K, Springael D (2015) Establishment of multiple pesticide biodegradation capacities from pesticide-primed materials in on-farm biopurification system microcosms treating complex pesticide-contaminated wastewater. Pest Manag Sci 71:986–995. doi:10.1002/ps.3876

    Article  CAS  PubMed  Google Scholar 

  • Sørensen SR, Juhler RK, Aamand J (2013) Degradation and mineralisation of diuron by Sphingomonas sp. SRS2 and its potential for remediating at a realistic μg L−1 diuron concentration. Pest Manag Sci 69:1239–1244. doi:10.1002/ps.3490

    PubMed  Google Scholar 

  • Sørensen SR, Simonsen A, Aamand J (2009) Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol Lett 292:291–296. doi:10.1111/j.1574-6968.2009.01501.x

    Article  PubMed  CAS  Google Scholar 

  • Springael D, Top EM (2004) Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12:53–58. doi:10.1016/j.tim.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  • Staddon WJ, Locke MA, Zablotowicz RM (2001) Microbiological characteristics of a vegetative buffer strip soil and degradation and sorption of metolachlor. Soil Sci Soc Am J 65:1136–1142. doi:10.2136/sssaj2001.6541136x

    Article  CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117. doi:10.1016/j.biotechadv.2003.08.010

    Article  CAS  PubMed  Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swindoll CM, Aelion CM, Pfaender FK (1988) Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl Environ Microbiol 54:212–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KA, Hand LH (2011) Assessing the potential for algae and macrophytes to degrade crop protection products in aquatic ecosystems. Environ Toxicol Chem 30:622–631. doi:10.1002/etc.412

    Article  CAS  PubMed  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Developments in biogeochemistry, vol 2. Springer, Dortrecht. doi:10.1007/978-94-009-5095-5

    Book  Google Scholar 

  • Tomco PL, Holmes WE, Tjeerdema RS (2013) Biodegradation of clomazone in a California rice field soil: carbon allocation and community effects. J Agric Food Chem 61:2618–2624. doi:10.1021/jf304692c

    Article  CAS  PubMed  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269. doi:10.1016/S0958-1669(03)00066-1

    Article  CAS  PubMed  Google Scholar 

  • Törnquist M, Kreuger J, Adielsson, S (2007) Occurrence of pesticides in Swedish water resources against a background of national risk-reduction programmes—results from 20 years of monitoring. In: XIII Symposium Pesticide Chemistry—Environmental Fate and Human Health

  • Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Acuña JJ, Briceño G, Diez MC (2013) Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. J Hazard Mater 260:459–467. doi:10.1016/j.jhazmat.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  • Tuxen N, H-Jr A, Bjerg PL (2006a) Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. J Contam Hydrol 85:179–194. doi:10.1016/j.jconhyd.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  • Tuxen N, Reitzel LA, Albrechtsen H-J, Bjerg PL (2006b) Oxygen-enhanced biodegradation of phenoxy acids in ground water at contaminated sites. Ground Water 44:256–265. doi:10.1111/j.1745-6584.2005.00104.x

    Article  CAS  PubMed  Google Scholar 

  • Udiković-Kolić N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189. doi:10.1007/s00253-012-4495-0

    Article  PubMed  CAS  Google Scholar 

  • Vandermeeren P, Baken S, Vanderstukken R, Diels J, Springael D (2016) Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: a microcosm study. Chemosphere 146:85–93. doi:10.1016/j.chemosphere.2015.11.089

    Article  CAS  PubMed  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7. doi:10.1111/j.1574-6968.2010.02000.x

    CAS  PubMed  Google Scholar 

  • Verhagen P, De Gelder L, Boon N (2013) Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Curr Microbiol 67:466–471. doi:10.1007/s00284-013-0389-3

    Article  CAS  PubMed  Google Scholar 

  • Vieuble-Gonod L, Benoit P, Cohen N, Houot S (2009) Spatial and temporal heterogeneity of soil microorganisms and isoproturon degrading activity in a tilled soil amended with urban waste composts. Soil Biol Biochem 41:2558–2567. doi:10.1016/j.soilbio.2009.09.017

    Article  CAS  Google Scholar 

  • Vischetti C, Monaci E, Cardinali A, Casucci C, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743. doi:10.1016/j.chemosphere.2008.04.065

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20. doi:10.1016/j.envint.2014.10.026

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Song CC, Yang GS (2013) Dissolved organic carbon characteristics in surface ponds from contrasting wetland ecosystems: a case study in the Sanjiang Plain, Northeast China. Hydrol Earth Syst Sci 17:371–378. doi:10.5194/hess-17-371-2013

    Article  CAS  Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663. doi:10.1021/es0484799

    Article  CAS  PubMed  Google Scholar 

  • Williams GM, Harrison I, Carlick CA, Crowley O (2003) Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer. J Contam Hydrol 64:253–267. doi:10.1016/S0169-7722(02)00206-1

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Wang Y, Li J (2011) Plant species mediate rhizosphere microbial activity and biodegradation dynamics in a riparian soil treated with bensulfuron-methyl. Clean-Soil Air Water 39:338–344. doi:10.1002/clen.201000189

    Article  CAS  Google Scholar 

  • Yassir A, Lagacherie B, Houot S, Soulas G (1999) Microbial aspects of atrazine biodegradation in relation to history of soil treatment. Pestic Sci 55:799–809. doi:10.1002/ps.2780550806

    Article  CAS  Google Scholar 

  • Ye C (2003) Environmental behavior of the herbicide acetochlor in soil. Bull Environ Contam Toxicol 71:919–923. doi:10.1007/s00128-003-0217-8

    Article  CAS  PubMed  Google Scholar 

  • Zearley TL, Summers RS (2012) Removal of trace organic micropollutants by drinking water biological filters. Environ Sci Technol 46:9412–9419. doi:10.1021/es301428e

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-B, Wang J, Liu W-L, Zhu S-X, Ge H-L, Chang SX, Chang J, Ge Y (2010) Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol Eng 36:62–68. doi:10.1016/j.ecoleng.2009.09.010

    Article  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618. doi:10.1007/s00253-004-1864-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the FP7 projects BIOTREAT (EU grant no. 266039), BACSIN (EU grant no. 211684), AQUAREHAB (EU grant no. 226565), and GOODWATER (EU grant no. 212683), by the Inter-University Attraction Pole (IUAP) “μ-manager” of the Belgian Science Policy (BELSPO, P7/25), the Danish Council for Strategic Research project MIRESOWA (grant no. 2104-08-0012), the FWO post-doctoral fellow grant no. 12Q0215N to B. Horemans, the FWO project grant no. G.OA53.15N, and the C14/15/043 project of KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Springael.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandermaesen, J., Horemans, B., Bers, K. et al. Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 100, 7361–7376 (2016). https://doi.org/10.1007/s00253-016-7709-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7709-z

Keywords

Navigation