Skip to main content
Log in

Applying theories of microbial metabolism for induction of targeted enzyme activity in a methanogenic microbial community at a metabolic steady state

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Novel enzymes that are stable in diverse conditions are intensively sought because they offer major potential advantages in industrial biotechnology, and microorganisms in extreme environments are key sources of such enzymes. However, most potentially valuable enzymes are currently inaccessible due to the pure culturing problem of microorganisms. Novel metagenomic and metaproteomic techniques that circumvent the need for pure cultures have theoretically provided possibilities to identify all genes and all proteins in microbial communities, but these techniques have not been widely used to directly identify specific enzymes because they generate vast amounts of extraneous data.

In a first step towards developing a metaproteomic approach to pinpoint targeted extracellular hydrolytic enzymes of choice in microbial communities, we have generated and analyzed the necessary conditions for such an approach by the use of a methanogenic microbial community maintained on a chemically defined medium. The results show that a metabolic steady state of the microbial community could be reached, at which the expression of the targeted hydrolytic enzymes were suppressed, and that upon enzyme induction a distinct increase in the targeted enzyme expression was obtained. Furthermore, no cross talk in expression was detected between the two focal types of enzyme activities under their respective inductive conditions. Thus, the described approach should be useful to generate ideal samples, collected before and after selective induction, in controlled microbial communities to clearly discriminate between constituently expressed proteins and extracellular hydrolytic enzymes that are specifically induced, thereby reducing the analysis to only those proteins that are distinctively up-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem. In: Shukla G, Varma A (eds) Soil enzymology, soil biology 22. Springer-Verlag, Berlin, pp. 229–243

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber RD (2007) Methanogenesis: ecology. In: Encyclopedia of life sciences. John Wiley and Sons, Ltd. Hoboken, USA. doi:10.1002/9780470015902.a0000475.pub2

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol 45:65–73

  • Boubaker F, Ridha BC (2008) Implementation of IWA anaerobic digestion model No. 1 (ADM1) for simulating the thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a semi-continuous tubular digester. Chem Eng J 141:75–88

    Article  Google Scholar 

  • Buswell AM and Hatfield DW (1936) Bulletin No. 32, anaerobic fermentations. State of Illinois department of registration and education, division of the state water survey, Urbana, USA

  • Carle-Urioste JC, Escobar-Vera J, El-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272:10169–10174

    Article  CAS  PubMed  Google Scholar 

  • Coleman DJ, Studler MJ, Naleway JJ (2007) A long-wavelength fluorescent substrate for continuous fluorometric determination of cellulase activity: resorufin-β-D-cellobioside. Anal Biochem 371:146–153

    Article  CAS  PubMed  Google Scholar 

  • Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Drosg B, Braun R, Bochmann G, Al Saedi T (2013) Analysis and characterization of biogas feedstocks. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook: science, production and applications. Woodhead Publishing Ltd, Sawston, p. 76

    Google Scholar 

  • Egli T, Zinn M (2003) The concept of multiple-nutrient-limited growth of microorganisms and its application in biotechnological processes. Biotechnol Adv 22:35–43

    Article  CAS  Google Scholar 

  • Elbeshbishy E, Nakhla G (2012) Batch anaerobic co-digestion of proteins and carbohydrates. Bioresource Technol 116:170–178

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana press, New York, pp. 571–607

    Chapter  Google Scholar 

  • Geisseler D, Horwath WR (2008) Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem 40:3040–3048

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine and beyond. Biomed Res Int, vol 2013, article ID 329191

  • Han SO, Cho HY, Yukawa H, Inui M, Doi RH (2004) Regulation of expression of cellulosomes and noncellulosomal (hemi) cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 186:4218–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Johnson EA, Madia A, Demain AL (1981) Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41:1060–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IJ, Lee HJ, Choi I-G, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480

    Article  CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotech 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Kopečný J, Hodrová B (1997) The effect of yellow affinity substance on cellulases of Ruminococcus flavefaciens. Lett Appl Microbiol 25:191–196

    Article  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enz Res, vol 2011, article ID 280696

  • Langer M, Gabor EM, Liebeton K, Meurer G, Niehaus F, Schulze R, Eck J, Lorenz P (2006) Metagenomics: an inexhaustible access to nature’s diversity. Biotechnol J 1:815–821

    Article  CAS  PubMed  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:1–11

    Google Scholar 

  • Ljungdahl LG, Pettersson B, Eriksson KE, Wiegel J (1983) A yellow affinity substance involved in the cellulolytic system of Clostridium thermocellum. Curr Microbiol 9:195–199

    Article  CAS  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Micro 3:510–516

    Article  CAS  Google Scholar 

  • Mienda BS, Yahya A, Galadima IA, Shamsir MS (2014) An overview of microbial proteases for industrial applications. Res J Pharm Biol Chem Sci 5:388–396

    CAS  Google Scholar 

  • Mould FL, Morgan R, Kliem KE, Krystallidou E (2005) A review and simplification of the in vitro incubation medium. Anim Feed Sci Tech 123:155–172

    Article  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 5:711–729

    Article  Google Scholar 

  • Nordell E, Moestedt J, Karlsson M (2011) Biogas producing laboratory reactor. SE Patent 1150954–4

  • Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32:172–186

    Article  CAS  PubMed  Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    Article  CAS  Google Scholar 

  • Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  CAS  PubMed  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  PubMed  Google Scholar 

  • Rogowska-Wrzesinska A, Le Bihan M-C, Thaysen-Andersen M, Roepstorff P (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Shink B (2002) Synergistic interactions in the microbial world. A Van Leeuw J Microb 81:257–261

    Article  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of β- glucosidases in the hydrolysis of cellulose for bioethanol production. Biores Technol 127:500–507

    Article  CAS  Google Scholar 

  • SS-EN 12176 (1998) Characterization of sludges—determination of pH. STD-23050. Swedish Standards Institute, Stockholm, Sweden

    Google Scholar 

  • SS-EN ISO 9963–2 (1994) Water quality—determination of alkalinity—part 2: determination of carbonate alkalinity. STD-18780. Swedish Standards Institute, Stockholm, Sweden

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:369–394

    Article  Google Scholar 

  • Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920

    Article  CAS  PubMed  Google Scholar 

  • Zinder SH (1984) Microbiology of anaerobic conversion of organic wastes to methane: recent developments. ASM News 50:294–298

    Google Scholar 

Download references

Acknowledgments

The technical support from Tekniska Verken i Linköping for running and maintaining the bioreactors is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Karlsson.

Ethics declarations

Funding

This work was financially supported by the Swedish Research Council (grant to Martin Karlsson, number 621-2009-4150) and InZymes Biotech AB.

Conflict of interest

Martin Karlsson is affiliated to both InZymes Biotech AB and Linköping University.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Jutta Speda and Mikaela A. Johansson contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speda, J., Johansson, M.A., Jonsson, BH. et al. Applying theories of microbial metabolism for induction of targeted enzyme activity in a methanogenic microbial community at a metabolic steady state. Appl Microbiol Biotechnol 100, 7989–8002 (2016). https://doi.org/10.1007/s00253-016-7547-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7547-z

Keywords

Navigation