Skip to main content

Advertisement

Log in

Emerging resistance to aminoglycosides in lactic acid bacteria of food origin—an impending menace

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aminoglycosides are the most preferred choice of therapy against serious infections in humans. Therefore, its use in animal husbandry has been strictly regulated in the EU, UK, and USA to avoid the hazards of aminoglycoside resistance in gut microflora. Nevertheless, aminoglycosides are recommended for prophylaxis and therapeutics in food animals and agriculture owing to its bactericidal nature. In the recent past, the global surge in aminoglycoside-resistant lactic acid bacteria (LAB) from food sources has been noticed that might question its continued use in animal husbandry. Upon antibiotic administration, a selective pressure is created in the gut environment; in such instances, LAB could act as reservoirs of antibiotic resistance which may facilitate their transfer to pathogenic organisms contradicting its probiotic and industrial significance. This may be a risk to human health as the presence of one aminoglycoside resistance gene renders the bacteria tolerant to almost all antibiotics of the same class, thereby challenging its therapeutic efficacy. Low doses of aminoglycosides are recommended in farm animals due to its toxic nature and insolubility in blood. However, recent investigations indicate that use of aminoglycosides in sub-lethal concentrations can trigger the selection and conjugal transfer of aminoglycoside resistance in probiotic LAB. Resistance to erythromycin, tetracyclines, and fluoroquinolones in LAB were reported earlier to which immediate regulatory measures were adopted by some countries. Paradoxically, lack of regulations on antibiotic use in farms in most developing countries makes them a potential source of antibiotic resistance and its uncontrolled spread around the globe. The prevalence of aminoglycoside resistance was observed in enterococci from food origin earlier; however, its emergence in lactobacilli and pediococci suggests its spread in probiotic cultures which prompts immediate precautionary methods. This review highlights the emergence and hazards of aminoglycoside-resistant LAB which is in prime commercial demand both for preparing fermented food and also pharma-based therapeutics. It further focuses on the mode of aminoglycoside resistance and its occurrence in food-grade LAB, thus relating to its role in worldwide transfer via the food chain in spite of its limited use as compared to other antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen HK (2014) Antibiotic resistance gene discovery in food producing animals. Curr Opin Microbiol 19:25–29. doi:10.1016/j.mib.2014.06.001

    Article  PubMed  CAS  Google Scholar 

  • Allen HK, Cloud-Hansen KA, Wolinski JM, Guan C, Greene S, Lu S, Boeyink M, Broderick NA, Raffa KF, Handelsman J (2009) Resident microbiota of the gypsy moth midgut harbors antibiotic resistance determinants. DNA Cell Biol 28:109–117. doi:10.1089/dna.2008.0812

    Article  PubMed  CAS  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259. doi:10.1038/nrmicro2312

    Article  PubMed  CAS  Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:1–7. doi:10.3389/fmicb.2010.00134

    Article  Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:1–19. doi:10.3389/fmicb.2011.00158

    Article  Google Scholar 

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161. doi:10.1111/j.1574-6968.2007.00757.x

    Article  PubMed  CAS  Google Scholar 

  • Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. doi:10.1016/j.fm.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 1-14. doi: 10.1038/nrmicro3270

  • Angulo F, Marano N, Johnson S, Mackinson C, Gilbert L, Park M, Debess E, Taylor B, Madden J, Hill B, Joyce K, Tenover F, Archibald L, the EIP Enterococci Study Team (2000) EIP enterococci study: monitoring for the seeds of antimicrobial resistance in the food supply. 2nd International Conference on Emerging Infectious Diseases. Atlanta, GA. http://www.iatp.org/files/EIP_Enterococci_Study_Monitoring_for_the_Seeds.htm July 2000

  • Aquilanti L, Garofalo C, Osimani A, Silvestri G, Vigaroli C, Clementi F (2007) Isolation and molecular characterization of antibiotic resistant LAB from poultry swine meat products. J Food Prot 70:557–565

    PubMed  CAS  Google Scholar 

  • Armstrong ES, Miller GH (2010) Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol 13:565–573. doi:10.1016/j.mib.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  • Ashraf R, Shah NP (2011) Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int Food Res J 18:837–853

    Google Scholar 

  • Azucena E, Grapsas I, Mobashery S (1997) Properties of a bifunctional bacterial antibiotic resistance enzyme that catalyzes ATP-dependent 2″-phosphorylation and acetyl-CoA-dependent 6′-acetylation of aminoglycosides. J Am Chem Soc 119:2317–2318. doi:10.1021/ja964278w

    Article  CAS  Google Scholar 

  • Belletti N, Gatti M, Bottari B, Neviani E, Tabanelli G, Gardini F (2009) Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses. J Food Prot 72:2162–2169

    PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70:2276–2280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bismuth R, Courvalin P (2010) Aminoglycosides and gram-positive bacteria, 3rd edn, Antibiogram. ESKA, Portland, pp 213–223

    Google Scholar 

  • Boehr DD, Daigle D, Wright GD (2004) Domain–domain interactions in the aminoglycoside antibiotic resistance enzyme AAC(6″)-APH(2′). Biochemistry 43:9846–9855. doi:10.1021/bi049135y

    Article  PubMed  CAS  Google Scholar 

  • Bogaerts P, Galimand M, Bauraing C, Deplano A, Vanhoof R, De Mendonca R, Rodriguez-Villalobos H, Struelens M, Glupczynski Y (2007) Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. J Antimicrob Chemother 59:459–464. doi:10.1093/jac/dkl527

    Article  PubMed  CAS  Google Scholar 

  • Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev 16:175–188. doi:10.1128/CMR.16.2.175-188:2003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Byarugaba DK, Kisame R, Olet S (2011) Multi-drug resistance in commensal bacteria of food of animal origin in Uganda. Afr J Microbiol Res 5:1539–1548

    Article  Google Scholar 

  • Byrne ME, Rouch DA, Skurray RA (1989) Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene 81:361–367

    Article  PubMed  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. doi:10.1111/j.1462-2920.2006.01054.x

    Article  PubMed  CAS  Google Scholar 

  • Caldwell SJ, Berghuis AM (2012) Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phospho transferase-Ia reveals a rigid solution structure. Antimicrob Agents Chemother 56:1899–1906. doi:10.1128/AAC.06378-11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Castanon JIR (2007) History of the use of antibiotic as growth promoters in European fields. Poult Sci 86:2466–2471. doi:10.3382/ps.2007-00249

    Article  PubMed  CAS  Google Scholar 

  • Cauwerts K, Pasmans F, De Vriese LA, Martel A, Haesebrouck F, Decostere A (2007) Cloacal Lactobacillus isolates from broilers show high prevalence of resistance towards macrolide and lincosamide antibiotics. Avian Pathol 35:160–164. doi:10.1080/03079450600598137

    Article  CAS  Google Scholar 

  • Centron D, Roy PH (2002) Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother 46:1402–1409. doi:10.1128/AAC.46.5.1402-1409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chantziaras I, Boyen F, Callens B, Dewulf J (2014) Correlation between veterinary antimicrobial use and antimicrobial resistance in food producing animals: a report on seven countries. J Antimicrob Chemother 69:827–834. doi:10.1093/jac/dkt443

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, TingTing Q, YuSong Y, JianYing Z (2006) Insertion sequence ISEcp1-like element connected with a novel aph(2″) allele [aph(2″)-Ie] conferring high level gentamicin resistance and a novel streptomycin adenylyltransferase gene in Enterococcus. J Med Microbiol 55:1521–1525. doi:10.1099/jmm

    Article  PubMed  CAS  Google Scholar 

  • Chow JW (2000) Aminoglycoside resistance in enterococci. Clin Infect Dis 31:586–589. doi:10.1099/jmm.0.46702-0

    Article  PubMed  CAS  Google Scholar 

  • Chow JW, Zervos MJ, Lerner SA, Thal LA, Donabedian SM, Jaworski DD, Tsai S, Shaw KJ, Clewell DB (1997) A novel gentamicin resistant gene in Enterococcus. Antimicrob Agents Chemother 41:511–514, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC163742/pdf/410511

  • Chow JW, Kak V, You I, Kao SJ, Petrin J, Clewell DB, Lerner SA, Miller GH, Shaw KJ (2001) Aminoglycoside resistance genes aph(2″)-Ib and aac(6′)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother 45:2691–2694. doi:10.1128/AAC.45.10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clark NC, Olsvik O, Swenson JM, Spiegel CA, Tenover FC (1999) Detection of a streptomycin adenyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob Agents Chemother 43:157–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Culebras E, Martinez JL (1999) Aminoglycoside resistance mediated by the bifunctional enzyme 6′-N-aminoglycoside acetyitransferases-2″-O-aminoglycoside phosphotransferases. Front Biosci 4:1–8

    Article  Google Scholar 

  • D’ Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int J Food Microbiol 115:35–42. doi:10.1016/j.ijfoodmicro.2006.10.003

    Article  CAS  Google Scholar 

  • Davies JE (2006) Aminoglycosides: ancient and modern. J Antibiot 59:529–532

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. doi:10.1128/MMBR.00016-10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Souza MJ, Nair S, Loka-Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology 15:379–384. doi:10.1007/s10646-006-0068-2

    Article  PubMed  CAS  Google Scholar 

  • De Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J (2001) Probiotics—compensation for lactase insufficiency. Am J Clin Nutr 73:S421–S429

    Google Scholar 

  • Del Campo R, Galan JC, Tenorio C, Ruiz-Garbajosa P, Zarazaga M, Torres C, Baquero F (2005) New aac(6′)-I genes in Enterococcus hirae and Enterococcus durans: effect on {beta}-lactam/aminoglycoside synergy. J Antimicrob Chemother 55:1053–1055. doi:10.1093/jac/dki138

    Article  PubMed  CAS  Google Scholar 

  • Devi SM, Halami PM (2011) Detection and characterization of pediocin PA-1/AcH like bacteriocin producing lactic acid bacteria. Curr Microbiol 011:9963–9968. doi:10.1007/s00284-011-9963-8

    Google Scholar 

  • Devirgilis C, Barile S, Perozzi G (2011) Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutr 6:275–284. doi:10.1007/s12263-011-0226-x

    Article  CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643. doi:10.1093/ps/84.4.634

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Arakawa Y (2007) 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45:88–94. doi:10.1086/518605

    Article  PubMed  CAS  Google Scholar 

  • Donabedian SM, Thal LA, Hershberger E, Perri MB, Chow JW, Bartlett P, Jones R, Joyce K, Rositer S, Gay K, Johnson J, Mackinson C, Debas E, Madden J, Angulo F, Zervos MJ (2003) Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans. J Clin Microbiol 41:1109–1113. doi:10.1128/JCM.41.3.1109-1113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubois V, Poirel L, Marie C, Arpin C, Nordmann P, Quentin C (2002) Molecular characterization of a novel class 1 integron containing bla GES-1 and a fused product of aac(3)-Ib/aac(6[dprime])-Ib″ gene cassettes in Pseudomonas aeruginosa. Antimicrob Agents Chemother 46:638–645. doi:10.1128/AAC.46.3.638-645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:1–10

    Google Scholar 

  • Feld L, Schjorring S, Hammer K, Licht TR, Danielsen M, Krogfelt K, Wilcks A (2008) Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J Antimicrob Chemother 61:845–852. doi:10.1093/jac/dkn033

    Article  PubMed  CAS  Google Scholar 

  • Ferretti JJ, Gilmore KS, Courvalin P (1986) Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galimand M, Emmanuelle S, Michel P, Benoit DSD, Yves M, Patrice C (2011) Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5 C1404-specific methyltransferase EfmM. RNA 17:251–262. doi:10.1261/rna.2233511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gandara A, Mota LC, Flores C, Perez HR, Green CF, Gibbs SG (2006) Isolation of Staphylococcus aureus and antibiotic-resistant Staphylococcus aureus from residential indoor bioaerosols. Environ Health Perspect 114:1859–1864. doi:10.1289/ehp.9585

    PubMed  PubMed Central  Google Scholar 

  • Gehring R, Haskell SR, Payne MA, Arthur L, Craigmill AL, Webb AI, Riviere JE (2005) Aminoglycoside residues in food origin. FARAD digest. Cell 89:887–895

    Google Scholar 

  • Gorbach SL (2001) Antimicrobial use in animal feed—time to stop. N Engl J Med 345:1202–1203

    Article  PubMed  CAS  Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301. doi:10.1128/MMBR.67.2.277-301.2003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guardabassi L, Schwarz S, Lloyd DH (2004) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332. doi:10.1093/jac/dkh332

    Article  PubMed  CAS  Google Scholar 

  • Hamilton-Miller JMT (2003) The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int J Antimicrob Agents 22:360–366. doi:10.1016/S0924-8579(03)00153-5

    Article  PubMed  CAS  Google Scholar 

  • Hanessian S, Pachamuthu K, Szychowski J, Giguère A, Swayze EE, Migawa MT, François B, Kondo J, Westhof E (2010) Structure based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: a synergistic hydrophobic effect against resistant bacteria. Bioorg Med Chem Lett 20:7097–7101. doi:10.1016/j.bmcl.2010.09.084

  • Houndt T, Ochman H (2000) Long-term shifts in patterns of antibiotic resistance in enteric bacteria. Appl Environ Microbiol 66:5406–5409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726

    Article  PubMed  CAS  Google Scholar 

  • Hummel AS, Hertel C, Holzapfel WH, Franz CM (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739. doi:10.1128/AEM.02105-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Isolauri E (2004) Probiotics. Best Pract Res Clin Gastroenterol 18:299–313

    Article  PubMed  Google Scholar 

  • Jackson CR, Fedorka CPJ, Barrett JB, Ladely SR (2004) Genetic relatedness of high level aminoglycoside resistant enterococci isolated from poultry carcasses. Avian Dis 48:100–107. doi:10.1637/7071

    Article  PubMed  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Davies JA, Barrett JB, Frye JG (2009) Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J Appl Microbiol 107:1269–1278. doi:10.1111/j.1365-2672.2009.04310.x

    Article  PubMed  CAS  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Davies JA, Barrett JB, Brousse JH, Gustafson J, Kucher M (2010) Mechanisms of antimicrobial resistance and genetic relatedness among enterococci isolated from dogs and cats in the United States. J Appl Microbiol 108:2171–2179. doi:10.1111/j.1365-2672.2009.04619.x

    PubMed  CAS  Google Scholar 

  • Jaimee G, Halami PM (2015) High level aminoglycoside resistance in Enterococcus, Pediococcus and Lactobacillus species from farm animals and commercial meat products. Ann Microbiol. doi:10.1007/s13213-015-1086-1

    Google Scholar 

  • Jose NM, Bunt CR, Hussain MA (2015) Implications of antibiotic resistance in probiotics. Food Rev Int 31:52–62. doi:10.1080/87559129.2014.961075

    Article  CAS  Google Scholar 

  • Kadavy DR, Hornby JM, Haverkost T, Nickerson KW (2000) Natural antibiotic resistance of bacteria isolated from larvae of the oil fly, Helaeomyia petrolei. Appl Environ Microbiol 66:4615–4619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, Meile L (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29:145–155. doi:10.1016/jsyapm.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644. doi:10.1016/j.tree.2006.07.004

    Article  PubMed  Google Scholar 

  • Kim C, Hesek D, Zajicek J, Vakulenko SB, Mobashery S (2006) Characterization of the bifunctional aminoglycoside-modifying enzyme ANT (3″)-Ii/AAC(6′)-IId from Serratia marcescens. Biochemistry 45:8368–8377. doi:10.1021/bi060723g

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Villegas-Estrada A, Hesek D, Mobashery S (2007) Mechanistic characterization of the bifunctional aminoglycoside-modifying enzyme AAC(3)-Ib/AAC(6′)-Ib from Pseudomonas aeruginosa. Biochemistry 46:5270–5282. doi:10.1021/bi700111z

    Article  PubMed  CAS  Google Scholar 

  • Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven KG, Hildebrandt B, Muller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912. doi:10.1093/jac/dkm035

    Article  PubMed  CAS  Google Scholar 

  • Klibi N, Aouini R, Borgo F, Said LB, Ferrario C, Dziri R, Boudabous A, Torres C, Slama KB (2014) Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann Microbiol. doi:10.1007/s13213-014-0908-x

    Google Scholar 

  • Krocko M, Canigova M, Duckova V, Artimova A, Bezekova J, Poston J (2011) Antibiotic resistance of Enterococcus species isolated from raw foods of animal origin in South west part of Slovakia. Czech J Food Sci 29:654–659

    CAS  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment—A review—Part I. Chemosphere 75:417–434. doi:10.1016/j.chemosphere.2008.11.086

    Article  PubMed  CAS  Google Scholar 

  • Lambert T (2012) Antibiotics that affect the ribosome. Rev Sci Tech 31:57–64

    PubMed  CAS  Google Scholar 

  • Larsen J, Schønheyder HC, Lester HC, Olsen SS, Porsbo LJ, Garcia ML, Jensen LB, Bisgaard M, Hammerum MA (2010) Porcine origin gentamicin resistant Enterococcus faecalis in humans, Denmark. Emerg Infect Dis 16:682–684. doi:10.3201/eid1604.090500

    Article  PubMed  PubMed Central  Google Scholar 

  • Laureti L, Matic I, Gutierezz A (2013) Bacterial responses and genome instability induced by sub-inhibitory concentrations of antibiotics. Antibiotics 2:100–114. doi:10.3390/antibiotics2010100

    Article  CAS  Google Scholar 

  • Lazar V, Nagy I, Spohn R, Csorgo B, Gyorkei A, Nyerges A, Horvath B, Voros A, Busa-Fekete R, Hrtyan M, Bogos B, Mehi O, Fekete G, Szappanos B, Kegl B, Papp B, Pal C (2014) Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 5:4352. doi:10.1038/ncomms5352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, Arakawa Y, Chong Y (2006) Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumonia and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis 56:305–312. doi:10.1016/j.diagmicrobio.2006.05.002

    Article  PubMed  CAS  Google Scholar 

  • Lester HC, Frimodt-Moller N, Hammerum AM (2004) Conjugal transfer of aminoglycoside and macrolide resistance between Enterococcus faecium isolates in the intestine of streptomycin-treated mice. FEMS Microbiol Lett 235:385–391. doi:10.1016/j.femsle.2004.04.050

    Article  PubMed  CAS  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. doi:10.1038/nm1145

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhang ZY, Dong K, Yuan JP, Guo XK (2009) Antibiotic resistance of probiotic strains of LAB isolated from marketed foods and drugs. Biomed Environ Sci 22:401–412

    Article  PubMed  CAS  Google Scholar 

  • Looft T, Jhonson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109:1691–1696. doi:10.1073/pnas.1120238109/-/DCS

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopes FS, Ribeiro T, Martins MP, Terreiro R, Crespo MTD (2003) Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. J Antimicrob Chemother 52:214–219. doi:10.1093/jac/dkg304

    Article  CAS  Google Scholar 

  • Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–499. doi:10.1021/cr0301088

    Article  PubMed  CAS  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733. doi:10.1128/CMR.00002-11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin MF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43:173–206

    Article  PubMed  CAS  Google Scholar 

  • Martinez JL, Sanchez MB, Martínez-Solano L, Hernandez A, Leonor G, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. doi:10.1111/j.1574-6976.2008.00157.x

    Article  PubMed  CAS  Google Scholar 

  • Martinez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123. doi:10.1038/nrmicro3399

    Article  PubMed  CAS  Google Scholar 

  • Masco L, Hoorde KV, Brandt ED, Swings J, Huys G (2006) Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94. doi:10.1093/jac/dkl197

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Katakura Y, Imanaka T, Aiba S (1984) Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by a plasmid pUB110. J Bacteriol 160:413–420

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mayrhofer S, Mair C, Kneifel W, Domig KJ (2011) Susceptibility of bifidobacteria of animal origin to selected antimicrobial agents. Chemother Res Prac 2011:1–6. doi:10.1155/2011/989520

    Article  CAS  Google Scholar 

  • McGann P, Courvalin P, Snesrud E, Clifford RJ, Yoon EJ, Onmus-Leone F, Ong AC, Kwak YI, Grillot-Courvalin C, Emil Lesho E, Waterman PE (2014) Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure. mBio 5, 2 e00915-14. doi:10.1128/mBio.00915-14

    Article  PubMed  Google Scholar 

  • Melhus A (1999) Aminoglycoside-resistant enterococci a new bacterial hazard. Lakartidningen 96:1694–1695

    PubMed  CAS  Google Scholar 

  • Milatovic D, Braveny I (1987) Development of resistance during antibiotic therapy. Eur J Clin Microbiol 1987(6):234–244

    Article  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J (2011) Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 62:1081–1089. doi:10.1007/s00284-010-9856-2

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KM, Bohn T, Townsend JP (2014) Detecting rare gene transfer events in bacterial populations. Front Microbiol 4:1–12. doi:10.3389/fmicb.2013.00415

    Article  Google Scholar 

  • Novais C, Coque TM, Costa MJ, Sousa JC, Baquero F, Peixe LV (2005) High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother 56:1139–1143. doi:10.1093/jac/dki360

    Article  PubMed  CAS  Google Scholar 

  • O′Connor EB, O′Sullivan O, Stanton C, Danielsen M, Simpson PJ, Callanan MJ, Ross PP, Hill C (2007) pEOC01: a plasmid from Pediococcus acidilactici which encodes an identical streptomycin resistance (aadE) gene to that found in Campylobacter jejuni. Plasmid 58:115–126. doi:10.1016/j.plasmid.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  • Okeke IN, Klugman KP, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Laxminarayan R (2005) Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis 5:568–580. doi:10.1016/S1473-3099(05)70217-6

    Article  PubMed  Google Scholar 

  • Ouoba LII, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224. doi:10.1016/j.ijfoodmicro.2007.11.018

    Article  PubMed  CAS  Google Scholar 

  • Pallechi L, Bartoloni A, Paradisi F, Rossoloni GM (2008) Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Rev Anti-Infect Ther 6:725–735. doi:10.1016/j.ijfoodmicro.2007.11.018

    Article  Google Scholar 

  • Phillips I (2007) Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int J Antimicrob Agents 30:101–107. doi:10.1016/j.ijantimicag.2007.02.018

    Article  PubMed  CAS  Google Scholar 

  • Planta MB (2007) The role of poverty in antimicrobial resistance. J Am Board Fam Med 20:533–539. doi:10.3122/jabfm.2007.06.070019

    Article  PubMed  Google Scholar 

  • Pochapin M (2000) The effect of probiotics on Clostridium difficile diarrhea. AmJ Gastroenterol 95:S11–S13. doi:10.1016/S0002-9270(99)00809-6

    Article  CAS  Google Scholar 

  • Poeta P, Costa D, Saenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C (2005) Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 52:396–402. doi:10.1111/j.1439-0450.2005.00881.x

    Article  PubMed  CAS  Google Scholar 

  • Ralph K (1990) Evolutionary origin of aminoglycoside phosphotransferase resistance genes. Emerg Infect Dis 16:489–490

    Google Scholar 

  • Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171. doi:10.1016/j.drup.2010.08.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramos S, Igrejas G, Capelo-Martinez JL, Poeta P (2012) Antibiotic resistance and mechanisms implicated in fecal enterococci recovered from pigs, cattle and sheep in a Portuguese slaughterhouse. Ann Microbiol 62:1485–1494. doi:10.1007/s13213-011-0402-7

    Article  CAS  Google Scholar 

  • Reardon S (2014) Antibiotic resistance sweeping developing world. News in focus. Nature 509:141–142, http://www.cddep.org/sites/default/files/nature_05-06-14.pdf Accessed 8 May 2014

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  PubMed  CAS  Google Scholar 

  • Romero D, Traxler MF, Lopez D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 9:5492–5505. doi:10.1021/cr2000509

    Article  CAS  Google Scholar 

  • Rosas I, Salinas E, Martínez L, Calva E, Cravioto A, Eslava C, Amábile-Cuevas CF (2006) Urban dust fecal pollution in Mexico city: antibiotic resistance and virulence factors of Escherichia coli. Int J Hyg Environ Health 209:461–470. doi:10.1016/j.ijheh.2006.03.007

    Article  PubMed  CAS  Google Scholar 

  • Rwego IB, Isabirye-Basuta G, Gillespie TR, Goldberg TL (2008) Gastrointestinal bacterial transmission among humans, mountain gorillas and livestock in Bwindi Impenetrable National Park Uganda. Conserv Biol 22:1600–1607. doi:10.1111/j.1523-1739.2008.01018.x

    Article  PubMed  Google Scholar 

  • Schaberg DR, Clewell DB, Glatzer L (1982) Conjugative transfer of R-plasmids from Streptococcus faecalis to Staphylococcus aureus. Antimicrob Agents Chemother 22:204–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Exp Biol Med 55:66–69. doi:10.3181/00379727-55-14461

    Article  CAS  Google Scholar 

  • Schjorring S, Krogfelt KA (2010) Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011:1–10. doi:10.1155/2011/312956

    Article  Google Scholar 

  • Segura PA, Francois M, Gagnon C, Sauve S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675–684. doi:10.1289/ehp.11776

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sergei BV, Shahriar M (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450. doi:10.1128/CMR.16.3.430-450.2003

    Article  CAS  Google Scholar 

  • Sergei BV, Susan MD, Anatoliy M, Marcus JZ, Stephen AL, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 47:1423–1426. doi:10.1128/AAC.47.4.1423-1426

    Article  CAS  Google Scholar 

  • Serrano PH (2005) Responsible use of antibiotics in aquaculture. Food Drug Agriculture organization of the United Nations. ISBN 92-5-105436-3.http://www.fao.org/3/a-a0282e.pdf. Accessed 5 Feb 2005

  • Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T (2015) Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50:250–258. doi:10.1016/j.foodcont.2014.09.003

    Article  CAS  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycosides resistance genes and familial relationships of the aminoglycoside modifying enzymes. Microbiol Rev 57:138–163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Simjee S, Gill MJ (1997) Gene transfer, gentamicin resistance and enterococci. J Hosp Infect 36:249–259

    Article  PubMed  CAS  Google Scholar 

  • Sjolund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, Kahlmeter G, Olsen B (2008) Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis 14:70–72. doi:10.3201/eid1401.070704

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DH (1967) R factor infection of Escherichia coli lyophilized in 1946. J Bacteriol 94:2071–2072

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorum M, Johnsen PJ, Aasnes B, Resvoll T, Kruse H, Sundsfjord A, Simonsen GS (2006) Prevalence, persistence and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on Avoparcin. Appl Environ Microbiol 72:515–521. doi:10.1128/AEM.72.1.516-521.2006

    Article  CAS  Google Scholar 

  • Sparo ML, Urbizu L, Solana MV, Pourcel G, Delpech G, Confalonieri A, Ceci M, Sánchez Bruni SF (2012) High-level resistance to gentamicin: genetic transfer between Enterococcus faecalis isolated from food of animal origin and human microbiota. Lett Appl Microbiol 54:119–125. doi:10.1111/j.1472-765X.2011.03182.x

    Article  PubMed  CAS  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164. doi:10.1086/524891

    Article  PubMed  Google Scholar 

  • Temmerman R, Pot B, Huys G, Swings J (2003) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol 81:1–10. doi:10.1016/S0168-1605(02)00162-9

    Article  PubMed  CAS  Google Scholar 

  • Tenorio C, Zarazaga M, Martmez C, Torres C (2001) Bifunctional 6′-N-aminoglycoside acetyltransferase-2″-O-aminoglycoside phosphotransferase in Lactobacillus and Pediococcus isolates of animal origin. J Clin Microbiol 39:824–825. doi:10.1128/JCM.39.2.824-825.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137

    Article  PubMed  CAS  Google Scholar 

  • Thal LA, Chow JW, Mahayni R, Bonilla H, Perri MB, Donabedian SA, Silverman J, Taber S, Zerves MJ (1995) Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrob Agents Chemother 39:2112–2115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • The United States Pharmacopeial Convention, Inc (2008) The United States Pharmacopeia 31/The National Formulary 26, Supp. 1, 8-1-08, online. United State Pharmacopeial Convention, Rockville, www.uspnf.com/uspnf/login

  • Thumu SCR, Halami PM (2012) Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leeuwenhoek 102:541–551. doi:10.1007/s10482-012-9749-4

    Article  PubMed  CAS  Google Scholar 

  • Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101–105. doi:10.1093/molbev/msu191

    Article  CAS  Google Scholar 

  • Toth M, Frase HNT, Antunes NT, Smith CA, Vakulenko SB (2010) Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2″-IVa. Protein Sci 19:1565–1576. doi:10.1002/pro.437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trieu-Cuot P, Courvalin P (1983) Nucleotide sequence of the Sreptococcus faecalis plasmid gene encoding the 3′5′ aminoglycoside phosphotransferase type III. Gene 23:331–341

    Article  PubMed  CAS  Google Scholar 

  • Tsai SF, Zervos MJ, Clewell DB, Donabedian SM, Sahm DF, Chow JW (1998) A new high-level gentamicin resistance gene, aph(2″)-Id, in Enterococcus spp. Antimicrob Agents Chemother 42:1229–1232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Venditti M, Brandimartr C, Capone A, Cassone M, Cali M, Tarasi A, Tarasi D (1997) Endocarditis caused by Enterococcus faecalis with high level resistance to aminoglycosides: failure of ampicillin and ceftriaxone combined therapy. Clin Microbiol Infect 3:577–580

    Article  PubMed  Google Scholar 

  • Viagappan M, Holiman RE (1999) Risk factors for acquisition of gentamicin-resistant enterococcal infection: a case-controlled study. Overseas Postgrad Med J 75:342–345. doi:10.1136/pmj.75.884.342

    Article  CAS  Google Scholar 

  • Vignaroli C, Zanderi G, Aquilanti L, Pasquaroli S, Biavasco F (2011) Multidrug resistant enterococci in animal meat and faeces and co transfer of resistance from an Enterococcus durans to a human Enterococcus faecium. Curr Microbiol 62:1438–1447. doi:10.1007/s00284-011-9880-x

    Article  PubMed  CAS  Google Scholar 

  • Walsh F (2013) Investigating antibiotic resistance in non-clinical environments. Front Microbiol 4:1–5. doi:10.3389/fmicb.2013.00019

    CAS  Google Scholar 

  • Wise R (2008) The worldwide threat of antimicrobial resistance. Curr Sci 95:181–187

    CAS  Google Scholar 

  • Witte W (2000) Ecological impact of antibiotic use in animals on different complex microflora: environment. Int J Antimicrob Agents 14:321–325

    Article  PubMed  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186. doi:10.1038/nrmicro1614

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Jing Z, Wenxia S, Weizhi H, Hengyi J, Dongrong C, Alastir IHM (2013) Riboswitch control of aminoglycoside antibiotic resistance. Cell 152:68–81. doi:10.1016/j.cell.2012.12.019

    Article  CAS  Google Scholar 

  • Yamane K, Wachino J, Doi Y, Kurokawa H, Arakawa Y (2005) Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis 11:951–953. doi:10.3201/eid1106.040924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yates CM, PearceMC WME, Amyes SG (2004) High frequency transfer and horizontal spread of apramycin resistance in calf faecal E. coli. J Antimicrob Chemother 54:534–537. doi:10.1093/jac/dkh353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Indian Council of Medical Research, New Delhi for financial assistance under the scheme antimicrobial drug resistance. JG would like to thank the UGC for the grant of MAN fellowship. The authors also wish to thank unknown reviewers and also to Dr. MC Varadaraj for critical comments on the mini-review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Halami.

Ethics declarations

Funding

This study was funded by Indian Council of Medical Research, New Delhi (ICMR Project Sanction No. AMR/24/2011-ECD-1).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimee, G., Halami, P.M. Emerging resistance to aminoglycosides in lactic acid bacteria of food origin—an impending menace. Appl Microbiol Biotechnol 100, 1137–1151 (2016). https://doi.org/10.1007/s00253-015-7184-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7184-y

Keywords

Navigation