Skip to main content
Log in

Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The quality and regulation of the incident light is crucial in microalgae cultivation processes. Depending on wavelength, spectrum, and intensity, growth characteristics and biochemical composition of these organisms vary. With mainly fluorescent lamps (FL) used previously for illumination, such variabilities could not be studied adequately due to their broad emission spectrum. In contrast, light-emitting diodes (LEDs) emit a very narrow wavelength band and enable flexible photobioreactor designs due to their small size. This review provides a condensed overview on the application of LEDs in microalgal cultivation processes. It summarizes the current availability and applicability of LED technologies as an illumination source for research-focused photobioreactor systems. A particular focus is the use of narrow-wavelength LEDs to address fundamental as well as applied aspects of light color on algae biomass and value-added compound formation. In this respect, the application of internal and external illumination systems is reviewed together with trends in the industrial use of LED systems to intensify algae process efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D’Ottavio M, Tredici MR (2014) Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 111(5):956–964. doi:10.1002/bit.25014

  • Alavosus TJ, Chaparian M, Mugavero M 2014 Use of Phenometrics PBR101 Bench-Top Algal Photo Bioreactor for the Optimization and Prediction of Production Scale Yields. In: 4th International Conference on Algal Biomass, Biofuels, & Bioproducts, Santa Fe Convention Center, Santa Fe, NM, USA

  • algaecan.com (2015) Publisher. http://algaecan.com/

  • algomed.de (2015) Publisher. http://www.algomed.de/

  • Andersen RA (1992) Diversity of eukaryotic algae. Biodiversity & Conservation 1(4):267–292. doi:10.1007/BF00693765

    Article  Google Scholar 

  • AnyCasting (2012) AnyCasting LED Optics. Publisher. www.symmetron.ru/suppliers/lighting/files/lighting/led/secondary_optics/AnyCasting%20Lens%20Catalogue.pdf

  • Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosyst Eng 38(6):995–1008. doi:10.1007/s00449-015-1363-1

    Article  CAS  Google Scholar 

  • astareal.com (2015) Publisher. http://www.astareal.com/

  • Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technol 148:373–378. doi:10.1016/j.biortech.2013.08.162

  • Azevedo IL, Morgan MG, Morgan F (2009) The transition to solid-state lighting. Proc IEEE 97(3):481–510. doi:10.1109/jproc.2009.2013058

    Article  CAS  Google Scholar 

  • Beczkowski S, Munk-Nielsen S 2010 Led spectral and power characteristics under hybrid PWM/AM dimming strategy. In: energy conversion congress and exposition (ECCE), 2010 IEEE, 12–16 Sept. 2010 p 731–735

  • Bernstein HC, Konopka A, Melnicki MR, Hill EA, Kucek LA, Zhang S, Shen G, Bryant DA, Beliaev AS (2014) Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front Microbiol 5 doi:10.3389/fmicb.2014.00488

  • Biard JR, Pittman GE (1966) Semiconductor radiant diode. Google Patents, http://www.google.com/patents/US3293513?hl=de

  • Bois C, Bodrogi P, Khanh T, Winkler H (2014) Measuring, simulating and optimizing current LED phosphor systems to enhance the visual quality of lighting. J Solid State Light 1(1):5. doi:10.1186/2196-1107-1-5

    Article  Google Scholar 

  • Bourget CM (2008) An introduction to light-emitting diodes. Hortscience 43(7):1944–1946

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Breuer G, Ld J, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7(1):70. doi:10.1186/1754-6834-7-70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brindley C, Acién FG, Fernández-Sevilla JM (2010) The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well-defined light regimes. Biotechnol Bioeng 106(2):228–237. doi:10.1002/bit.22676

    PubMed  CAS  Google Scholar 

  • Canada NRCo (2013) Government of Canada investing in technology to reduce GHG emissions in the oil sands. In: http://www.nrc-cnrc.gc.ca/eng/news/releases/2013/algae_nrc.html (ed).

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5):1275–1288. doi:10.1007/s00253-010-3047-8

    Article  PubMed  CAS  Google Scholar 

  • Chen H-B, Wu J-Y, Wang C-F, Fu C-C, Shieh C-J, Chen C-I, Wang C-Y, Liu Y-C (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53(1):52–56. doi:10.1016/j.bej.2010.09.004

    Article  CAS  Google Scholar 

  • Chen M, Mertiri T, Holland T, Basu AS (2012) Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae. Lab Chip 12(20):3870–3874. doi:10.1039/C2LC40478H

  • Chen YC, Lee MC (2012) Double-power double-heterostructure light-emitting diodes in microalgae, Spirulina platensis and Nannochloropsis oculata, cultures. J Mar Sci Technol-Taiwan 20(2):233–236

    Google Scholar 

  • Choi H-J (2014) Effect of optical panel distance in a photobioreactor for nutrient removal and cultivation of microalgae. World J Microbiol Biotechnol 30(7):2015–2023. doi:10.1007/s11274-014-1626-z

    Article  PubMed  CAS  Google Scholar 

  • Choi YK, Kumaran RS, Jeon HJ, Song HJ, Yang YH, Lee SH, Song KG, Kim KJ, Singh V, Kim HJ (2015) LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectroc Acta Pt A-Molec Biomolec Spectr 145:245–253. doi:10.1016/j.saa.2015.03.035

  • Combe C, Hartmann P, Rabouille S, Talec A, Bernard O, Sciandra A (2015) Long-term adaptive response to high-frequency light signals in the unicellular photosynthetic eukaryote Dunaliella salina. Biotechnol Bioeng 112(6):1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104(2):352–359. doi:10.1002/bit.22394

    Article  PubMed  CAS  Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4):3883–3887. doi:10.1016/j.biortech.2010.11.102

    Article  CAS  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, Herjolfsson G, Brynjolfsson S, Palsson BØ (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Biotechnol J 161(3):242–249. doi:10.1016/j.jbiotec.2012.07.004

  • Fu W, Guðmundsson Ó, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson BØ, Brynjólfsson S (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biot 97(6):2395–2403. doi:10.1007/s00253-012-4502-5

    Article  CAS  Google Scholar 

  • Gérin S, Mathy G, Franck F (2014) Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Syst Biol 8(1):96. doi:10.1186/s12918-014-0096-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon J, Polle JW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biot 76(5):969–975. doi:10.1007/s00253-007-1102-x

    Article  CAS  Google Scholar 

  • Grolms M, Hüther MC, Kleebank S, Bradley R, Ong T, O’Brien J, Hamel J-F (2011) Novel LED-based light source for cultivation of phototrophic organisms in a stirred-tank bioreactor. Massachusetts Institute of Technology, DASGIP. Online verfügbar unter http://www.bioprocessonline.com/doc/novel-led-based-light-source-for-cultivation-0001.

  • Gu Y, Narendran N, Dong T, Wu H (2006) Spectral and luminous efficacy change of high-power LEDs under different dimming methods. Paper presented at the Sixth International Conference on Solid State Lighting

  • Heining M, Buchholz R (2015) Photobioreactors with internal illumination—a survey and comparison. Biotechnol J 10(8):1131–1137. doi:10.1002/biot.201400572

    Article  PubMed  CAS  Google Scholar 

  • Heining M, Sutor A, Stute SC, Lindenberger CP, Buchholz R (2014) Internal illumination of photobioreactors via wireless light emitters: a proof of concept. J Appl Phycol. doi:10.1007/s10811-014-0290-x

    Google Scholar 

  • Hong E, Narendran N (2004) A method for projecting useful life of LED lighting systems. In, vol 5187. p 93–99

  • Huesemann M (2012) Microalgae—successful transition from lab to pond: integrated strategy of strain characterization, Growth Modeling, and Pond Culturing

  • Huesemann M, Crowe B, Chavis A, Dodwell A, Wigmosta M (2013a) Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds.

  • Huesemann M, Van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B (2013b) A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnol Bioeng 110(6):1583–1594. doi:10.1002/bit.24814

    Article  PubMed  CAS  Google Scholar 

  • Hultberg M, Jönsson HL, Bergstrand K-J, Carlsson AS (2014) Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresource Technol 159:465–467. doi:10.1016/j.biortech.2014.03.092

  • Jacobi A, Steinweg C, Sastre RR, Posten C (2012) Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630. doi:10.1002/elsc.201200004

    Article  CAS  Google Scholar 

  • Jeffrey S, MacTavish H, Dunlap W, Vesk M, Groenewoud K (1999) Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar Ecol Prog Ser 189:35–51

    Article  CAS  Google Scholar 

  • Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb Technol 35(1):81–86 doi:10.1016/j.enzmictec.2004.03.016

  • Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102(5):442–446. doi:10.1263/jbb.102.442

    Article  PubMed  CAS  Google Scholar 

  • Kim CW, Sung M-G, Nam K, Moon M, Kwon J-H, Yang J-W (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresource Technol 159:30–35. doi:10.1016/j.biortech.2014.02.024

    Article  CAS  Google Scholar 

  • Kim TH, Lee Y, Han SH, Hwang SJ (2013) The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technol 130:75–80. doi:10.1016/j.biortech.2012.11.134

    Article  CAS  Google Scholar 

  • Koc C, Anderson GA, Kommareddy A (2013) Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr J Aquac-Bamidgeh 65:8

    Google Scholar 

  • Kula M, Rys M, Możdżeń K, Skoczowski A (2014) Metabolic activity, the chemical composition of biomass and photosynthetic activity of Chlorella vulgaris under different light spectra in photobioreactors. Eng Life Sci 14(1):57–67. doi:10.1002/elsc.201200184

  • Kwon HK, Oh SJ, Yang HS, Kim DM, Kang IJ, Oshima Y (2013) Laboratory study for the phytoremediation of eutrophic coastal sediment using benthic microalgae and light emitting diode (LED). J Fac Agric Kyushu Univ 58(2):417–425

    CAS  Google Scholar 

  • Lee C-G, Palsson BO (1994) High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Lehmann N, Rischer H, Eibl D, Eibl R (2013) Wave-mixed and orbitally shaken single-use photobioreactors for diatom algae propagation. Chem-Ing-Tech 85(1–2):197–201. doi:10.1002/cite.201200137

    Article  CAS  Google Scholar 

  • Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments. Algal Research 6(Part B):242–249. doi:10.1016/j.algal.2013.12.007

    Article  Google Scholar 

  • Lunka AA, Bayless DJ (2013) Effects of flashing light-emitting diodes on algal biomass productivity. J Appl Phycol 25(6):1679–1685. doi:10.1007/s10811-013-0044-1

    Article  CAS  Google Scholar 

  • Matthijs HCP, Balke H, VanHes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50(1):98–107

    Article  PubMed  CAS  Google Scholar 

  • Markou G (2014) Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl Biochem Biotechnol 172(5):2758–2768. doi:10.1007/s12010-014-0727-3

  • Melnicki MR, Pinchuk GE, Hill EA, Kucek LA, Stolyar SM, Fredrickson JK, Konopka AE, Beliaev AS (2013) Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria. Bioresource Technol 134:127–133. doi:10.1016/j.biortech.2013.01.079

    Article  CAS  Google Scholar 

  • Mueller-Mach R, Mueller GO, Krames MR, Trottier T (2002) High-power phosphor-converted light-emitting diodes based on III-nitrides. IEEE J Sel Top Quantum Electron 8(2):339–345. doi:10.1109/2944.999189

    Article  CAS  Google Scholar 

  • Muthu S, Schuurmans FJ, Pashley MD 2002 Red, green, and blue LED based white light generation: issues and control. In: Industry Applications Conference, 2002 37th IAS Annual Meeting Conference Record of the, p 327–333 vol.1

  • Moncada J, Cardona CA, Rincón LE (2015) Design and analysis of a second and third generation biorefinery: the case of castorbean and microalgae. Bioresource Technol 198:836–843. doi:10.1016/j.biortech.2015.09.077

    Article  CAS  Google Scholar 

  • Nedbal L, Trtílek M, Červený J, Komárek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100(5):902–910. doi:10.1002/bit.21833

    Article  PubMed  CAS  Google Scholar 

  • Nedbal L, Trtílek M, Kaftan D (1999) Flash fluorescence induction: a novel method to study regulation of photosystem II. J. Photochem. Photobiol. B: Biology 48(2–3):154–157. doi:10.1016/s1011-1344(99)00032-9

    Article  CAS  Google Scholar 

  • Nelson JA, Bugbee B (2014) Economic analysis of greenhouse lighting: light emitting diodes vs. hgh intensity discharge fixtures. PLoS One 9(6):e99010. doi:10.1371/journal.pone.0099010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nymark M, Valle KC, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM, Brembu T (2013) Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One 8(3):e58722. doi:10.1371/journal.pone.0058722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okumura C, Saffreena N, Rahman MA, Hasegawa H, Miki O, Takimoto A (2015) Economic efficiency of different light wavelengths and intensities using LEDs for the cultivation of green microalga Botryococcus braunii (NIES-836) for biofuel production. Environ Prog Sustain Energy 34(1):269–275. doi:10.1002/ep.11951

  • Park K-H, Lee C-G (2001) Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density. Biotechnol Bioprocess Eng 6(3):189–193. doi:10.1007/BF02932549

    Article  CAS  Google Scholar 

  • PNNL (2008) LED Basics. PNNL-SA-58429. Publisher. http://www.iar.unicamp.br/lab/luz/ld/L%E2mpadas/led_tech.pdf

  • pondbiofuels.com (2014) Publisher. http://pondbiofuels.com/

  • Posten C, Walter C (2012) Microalgal biotechnology: integration and economy. Walter de Gruyter, Berlin; Boston

    Book  Google Scholar 

  • Pozza C, Schmuck S, Mietzel T (2012) A novel photobioreactor with internal illumination using Plexiglas rods to spread the light and LED as a source of light for wastewater treatment using microalgae. In: Proceedings of the IWA congress on water climate and energy: 1305–18052012, Dublin, Ireland

  • Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, Hankamer B (2015) Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions. Biotechnol Biofuels 8(1):31. doi:10.1186/s13068-015-0238-7

    Article  CAS  Google Scholar 

  • Rendón SM, Roldan GJC, Voroney RP (2013) Effect of carbon dioxide concentration on the growth response of Chlorella vulgaris under four different led illumination. Int J Biotechnol Wellness Ind 2(3):125–131

  • Royer MP, Tuttle R, Rosenfeld S, Miller NJ (2013) Color maintenance of LEDs in laboratory and field applications. Pacific Northwest National Laboratory, Richland, Wash

    Google Scholar 

  • ruraldelivery.net.nz (2014) Business growth in astaxanthin production In: http://www.ruraldelivery.net.nz/2014/04/business-growth-in-astaxanthin-production/ (ed)

  • Sasi D, Mitra P, Vigueras A, Hill GA (2011) Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor. J Chem Technol Biotechnol 86(6):875–880. doi:10.1002/jctb.2603

  • Scholand M, Dillon HE (2012) Life-cycle assessment of energy and environmental impacts of LED lighting products part 2: LED manufacturing and performance. p Medium: ED; Size: PDFN

  • Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32(8):422–430. doi:10.1016/j.tibtech.2014.06.001

    Article  PubMed  CAS  Google Scholar 

  • Sforza E, Gris B, Silva CED, Morosinotto T, Bertucco A (2014) Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. In: Bardone E, Bravi M, Keshavarz T (eds) Ibic2014: 4th International Conference on Industrial Biotechnology. Chemical Engineering Transactions, vol 38. Aidic Servizi Srl, Milano, pp 211–216

  • Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T, Webber A (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7(6):e38975. doi:10.1371/journal.pone.0038975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shu C-H, Tsai C-C, Liao W-H, Chen K-Y, Huang H-C (2012) Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol 87(5):601–607. doi:10.1002/jctb.2750

  • Siemerink MAJ, Cuaresma M, Bosma R (2014) Luminostat mode batch cultivation of microalgae in a flat panel photobioreactor. Labfors 5 Lux LED Flat Panel Option. Infors Benelux; AlgaePARC, Wageningen. Online verfügbar unter http://www.infors-ht.com/9a2084c2bd7f9f94b2b821415d47ed10.

  • supremebiotech.com (2015) Publisher. http://www.supremebiotech.com/

  • Sutor A, Heining M, Lindenberger C, Buchholz R (2014) Method for optimizing the field coils of internally illuminated photobioreactors. IEEE T Magn 50(11):1–4. doi:10.1109/tmag.2014.2320934

    Article  Google Scholar 

  • Tamburic B, Zemichael FW, Crudge P, Maitland GC, Hellgardt K (2011) Design of a novel flat-plate photobioreactor system for green algal hydrogen production. Int J Hydrogen Energ 36(11):6578–6591. doi:10.1016/j.ijhydene.2011.02.091

    Article  CAS  Google Scholar 

  • Tamburic B, Guruprasad S, Radford DT, Szabó M, Lilley RM, Larkum AWD, Franklin JB, Kramer DM, Blackburn SI, Raven JA, Schliep M, Ralph PJ (2014) The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix. PLoS One 9(1):e86047. doi:10.1371/journal.pone.0086047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang H, Abunasser N, Garcia MED, Chen M, Simon Ng KY, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energ 88(10):3324–3330. doi:10.1016/j.apenergy.2010.09.013

    Article  CAS  Google Scholar 

  • Tang H, Chen M, Simon Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474. doi:10.1002/bit.24516

    Article  PubMed  CAS  Google Scholar 

  • Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A (2014) Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource Technol 162(0):38–44. doi:10.1016/j.biortech.2014.03.113

    Article  CAS  Google Scholar 

  • van Wagenen J, Holdt SL, Dd F, Valverde-Pérez B, Plósz BG, Angelidaki I (2014) Microplate-based method for high-throughput screening of microalgae growth potential. Bioresource Technol 169:566–572. doi:10.1016/j.biortech.2014.06.096

    Article  CAS  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresource Technol 135:142–149. doi:10.1016/j.biortech.2012.10.135

    Article  CAS  Google Scholar 

  • Vejrazka C, Janssen M, Streefland M, Wijffels RH (2012) Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng 109(10):2567–2574. doi:10.1002/bit.24525

    Article  PubMed  CAS  Google Scholar 

  • Willard SS, Jarvis JM, Hamel J-F, Sha M (2014) Microalgae Culture Using the DASGIP® PBR4 Module for Illumination with a New Brunswick™ CelliGen® 310 Stirred-tank Bioreactor. Hg. v. eppendorf. Massachusetts Institute of Technology; Chemical Engineering Department, Cambridge; Eppendorf, Inc., Applications R&D Lab, Enfield. Online verfügbar unter https://online-shop.eppendorf.de/eshopdownload/downloadbykey/78786_1.

  • Xu B, Cheng P, Yan C, Pei HY, Hu WR (2013) The effect of varying LED light sources and influent carbon/nitrogen ratios on treatment of synthetic sanitary sewage using Chlorella vulgaris. World J Microbiol Biotechnol 29(7):1289–1300. doi:10.1007/s11274-013-1292-6

  • Xue S, Su Z, Cong W (2011) Growth of Spirulina platensis enhanced under intermittent illumination. J Biotechnol 151(3):271–277. doi:10.1016/j.jbiotec.2010.12.012

  • Yen H-W, Hu I-C, Chen C-Y, Ho S-H, Lee D-J, Chang J-S (2013) Microalgae-based biorefinery–from biofuels to natural products. Bioresource Technol 135:166–174. doi:10.1016/j.biortech.2012.10.099

    Article  CAS  Google Scholar 

  • Yago T (2012) Effects of flashing light from light emitting diodes (LEDs) on growth of the microalga Isochrysis galbana. Afr J Microbiol Res 6(30). doi:10.5897/ajmr12.568

  • Yanagisawa T (1998) The degradation of GaAlAs red light-emitting diodes under continuous and low-speed pulse operations. Microelectron Reliab 38(10):1627–1630. doi:10.1016/s0026-2714(98)00029-8

    Article  Google Scholar 

  • Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J (2015) Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci 15(1):122–132. doi:10.1002/elsc.201300165

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brück.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

M. Glemser, M. Heining and J. Schmidt have contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glemser, M., Heining, M., Schmidt, J. et al. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 100, 1077–1088 (2016). https://doi.org/10.1007/s00253-015-7144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7144-6

Keywords

Navigation