Skip to main content
Log in

Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L−1 within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0–8.0) and temperatures (25–35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg−1). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albuquerquem MGE, Concas S, Bengtsson S, Reis MAM (2010) Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresour Technol 101:7112–7122

    Article  Google Scholar 

  • Alferness P, Wiebe L (2002) Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J Agric Food Chem 50:3926–3934

    Article  CAS  PubMed  Google Scholar 

  • Arora PK, Sasikala C, Ramana CV (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277

    Article  CAS  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59

    Article  CAS  PubMed  Google Scholar 

  • Basak B, Bhuniab B, Dey A (2014) Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation. Int Biodeterior Biodegrad 93:107–117

    Article  CAS  Google Scholar 

  • Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot J, Mallet C, Bohatier J (2009) Isolation and characterization of mesotrione-degrading Bacillus sp. from soil. Environ Pollut 157:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch Environ Contam Toxicol 55:576–58

    Article  CAS  PubMed  Google Scholar 

  • Boutin C, Strandberg B, Carpenter D, Mathiassen SK, Thomas PJ (2014) Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications? Environ Pollut 185:295–306

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902

    Article  CAS  PubMed  Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Geng P, Xiao Y, Hu M (2012) Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94:505–515

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang LH (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Chang C, Deng Y, An S, Dong YH, Zhou J, Hu M, Zhong G, Zhang LH (2014) Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potentials for bioremediation of pyrethroid-contaminated soils. J Agric Food Chem 62:2147–2157

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang LH (2015) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 5:8784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen GN (2014) Microbial biochemistry, 3rd edn. Springer, New York

    Google Scholar 

  • Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202

    Article  CAS  Google Scholar 

  • Cycoń M, Zmijowska A, Piotrowska-Seget Z (2014) Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int J Environ Sci Technol 11:1305–1316

    Article  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  PubMed  Google Scholar 

  • Délye C, Jasieniuk M, Le Correl V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649–658

    Article  PubMed  Google Scholar 

  • Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durand S, Légeret B, Martin A, Sancelme M, Delort A, Besse-Hoggan P, Combourieu B (2006) Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Durand S, Sancelme M, Besse-Hoggan P, Combourieu B (2010) Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling. Chemosphere 81:372–380

    Article  CAS  PubMed  Google Scholar 

  • Dyson JS, Beulke S, Brown CD, Lane MCG (2002) Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J Environ Qual 31:613–618

    Article  CAS  PubMed  Google Scholar 

  • Ema T, Miyazaki Y, Kozuki I, Sakai T, Hashimoto H, Takada J (2011) Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: the dramatic effect of the immobilization support on enzymatic function. Green Chem 13:3187–3195

    Article  CAS  Google Scholar 

  • Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88:585–594

    Article  CAS  PubMed  Google Scholar 

  • Felix J, Doohan DJ, Bruins D (2007) Differential vegetable crop responses to mesotrione soil residues a year after application. Crop Prot 26:1395–1403

    Article  CAS  Google Scholar 

  • Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011a) Advances in ethanol production. Curr Opin Biotechnol 22:312–319

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011b) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711

    Article  CAS  PubMed  Google Scholar 

  • Han H, Liu J, Gao Y, Zhang J, Zhong G (2013) Isolation, identification and characterization of a mesotrione-degrading bacterial strain. J Huazhong Agric Univ 32:62–66

    CAS  Google Scholar 

  • Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SV, Markad VL, Melo JS, D’Souza SF, Kodam KM (2014) Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3. Appl Microbiol Biotechnol 98:919–929

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gummadi SN (2011) Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Appl Microbiol Biotechnol 89:1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Legrouri A, Lakraimi M, Barroug A, De Roy A, Besse JP (2005) Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Res 39:3441–3448

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE, Brodie JE, Bainbridge ZT, Rohde KW, Davis AM, Masters BL, Maughan M, Devlin MJ, Mueller JF, Schaffelke B (2009) Herbicides: a new threat to the great barrier reef. Environ Pollut 157:2470–2484

    Article  CAS  PubMed  Google Scholar 

  • Lima DLD, Schneider RJ, Scherer HW, Duarte AC, Santos EBH, Esteves V (2010) Sorption–desorption behavior of atrazine on soils subjected to different organic long-term amendments. J Agric Food Chem 58:3101–3106

    Article  CAS  PubMed  Google Scholar 

  • Liu J, He Y, Chen S, Xiao Y, Hu M, Zhong G (2014) Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables. PLoS One 9, e103558

    Article  PubMed Central  PubMed  Google Scholar 

  • Martínez SS, Bahena CL (2009) Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents. Water Res 43:33–40

    Article  PubMed  Google Scholar 

  • Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2:1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120–128

    Article  CAS  PubMed  Google Scholar 

  • Page D, Dillon P, Mueller J, Bartkow M (2010) Quantification of herbicide removal in a constructed wetland using passive samplers and composite water quality monitoring. Chemosphere 82:394–399

    Article  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  PubMed  Google Scholar 

  • Piccirillo C, Pereira SIA, Marques APGC, Pullar RC, Tobaldi DM, Pintado ME, Castro PML (2013) Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. J Environ Manag 121:87–95

    Article  CAS  Google Scholar 

  • Pileggi M, Pileggi SAV, Olchanheski LR, de Silva PAG, Gonzalez AMM, Koskinen WC, Barber B, Sadowsky MJ (2012) Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere 86:1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQ (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  CAS  PubMed  Google Scholar 

  • Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895

    Article  CAS  PubMed  Google Scholar 

  • Ramos J, Marqués S, van Dillewijn P, Espinosa-Urgel M, Segura A, Duque E, Krell T, Ramos-González M, Bursakov S, Roca A, Solano J, Fernádez M, Niqui JL, Pizarro-Tobias P, Wittich R (2011) Laboratory research aimed at closing the gaps in microbial bioremediation. Trends Biotechnol 29:641–647

    Article  CAS  PubMed  Google Scholar 

  • Ricart M, Barceló D, Geiszinger A, Guasch H, de Ald ML, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on bioflim algae and bacteria. Chemosphere 76:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Carrasco CA, Ahuatzi-Chacón D, Galíndez-Mayer J, Ruiz-Ordaz N, Juárez-Ramírez C, Martínez-Jerónimo F (2013) Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Bioresour Technol 145:33–36

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–163

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–396

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–167

    Article  CAS  PubMed  Google Scholar 

  • Šojić DV, Orčić DZ, Četojević-Simin DD, Despotović VN, Abramović BF (2014) Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures. J Mol Catal A Chem 392:67–75

    Article  Google Scholar 

  • Stelting S, Burns RG, Sunna A, Visnovsky G, Bunt CR (2012) Immobilization of Pseudomonas sp. strain ADP: a stable inoculant for the bioremediation of atrazine. Appl Clay Sci 64:90–93

    Article  CAS  Google Scholar 

  • Sutton P, Richards C, Buren L, Glasgow L (2002) Activity of mesotrione on resistant weeds in maize. Pest Manag Sci 58:981–984

    Article  CAS  PubMed  Google Scholar 

  • Waghmare PR, Kadam AA, Saratale GD, Govindwar SP (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A 110:4021–4026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong F, Bidleman TF (2011) Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: volatilization, bioaccessibility, and degradation. Environ Sci Technol 45:958–963

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99:2849–2859

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the National Natural Science Foundation of China (grant number 31371960).

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, S., Ding, J. et al. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl Microbiol Biotechnol 99, 10839–10851 (2015). https://doi.org/10.1007/s00253-015-6935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6935-0

Keywords

Navigation