Skip to main content
Log in

N2O accumulation from denitrification under different temperatures

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K (2010) N2O emissions from activated sludge processes, 2008-2009: results of a national monitoring survey in the United States. Environ Sci Technol 44(12):4505–4511. doi:10.1021/es903845y

    Article  CAS  PubMed  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48(5):835–852

    CAS  PubMed  Google Scholar 

  • APHA (2012) Standard methods for examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Baytshtok V, Lu HJ, Park H, Kim S, Yu R, Chandran K (2009) Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol Bioeng 102(6):1527–1536. doi:10.1002/bit.22213

    Article  CAS  PubMed  Google Scholar 

  • Clarke JKA (1964) Kinetics of absorption of cardon dioxide in monoethanolamine solutions at short contact times. Ind Eng Chem Fundam 3(3):239–245. doi:10.1021/i160011a012

    Article  CAS  Google Scholar 

  • Dawson RN, Murphy KL (1972) The temperature dependency of biological denitrification. Water Res 6(1):71–83. doi:10.1016/0043-1354(72)90174-1

    Article  CAS  Google Scholar 

  • Gejlsbjerg B, Frette L, Westermann P (1998) Dynamics of N2O production from activated sludge. Water Res 32(7):2113–2121. doi:10.1016/s0043-1354(97)00456-9

    Article  CAS  Google Scholar 

  • Haimour N, Sandall OC (1984) Absorption of carbon dioxide into aqueous methyldiethanolamine. Chem Eng Sci 39(12):1791–1796. doi:10.1016/0009-2509(84)80115-3

    Article  CAS  Google Scholar 

  • Haynes WM (2013) CRC handbook of chemistry and physics, 94th edn. Taylor & Francis, Florida

    Google Scholar 

  • Hiatt WC, Grady CPL (2008) Application of the activated sludge model for nitrogen to elevated nitrogen conditions. Water Environ Res 80(11):2134–2144. doi:10.2175/106143008x304767

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhang J, Li S, Xie H (2013) Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ Sci Pollut Res 20(2):1059–1069. doi:10.1007/s11356-012-1018-6

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43(17):4093–4103. doi:10.1016/j.watres.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  • Lewandoswki Z (1982) Temperature dependency of biological denitrification with organic materials addition. Water Res 16(1):19–22. doi:10.1016/0043-1354(82)90048-3

    Article  CAS  Google Scholar 

  • Li C, Zhang J, Liang S, Ngo H, Guo W, Zhang Y, Zou Y (2013) Nitrous oxide generation in denitrifying phosphorus removal process: main causes and control measures. Environ Sci Pollut Res 20(8):5353–5360. doi:10.1007/s11356-013-1530-3

    Article  CAS  Google Scholar 

  • Lu HJ, Chandran K (2010) Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnol Bioeng 106(3):390–398. doi:10.1002/bit.22704

    CAS  PubMed  Google Scholar 

  • Metcalf and Eddy, Tchobanoglous G, Burton FL, Stensel HD (2013) Wastewater engineering: treatment and resource recovery. McGraw-Hill Education, New York, USA

  • Pan Y, Ye L, Ni B-J, Yuan Z (2012) Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res 46(15):4832–4840. doi:10.1016/j.watres.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ni B-J, Bond PL, Ye L, Yuan Z (2013a) Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res 47(10):3273–3281. doi:10.1016/j.watres.2013.02.054

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ye L, Yuan Z (2013b) Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Environ Sci Technol 47(15):8408–8415. doi:10.1021/es401632r

    CAS  PubMed  Google Scholar 

  • Ribera-Guardia A, Kassotaki E, Gutierrez O, Pijuan M (2014) Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community. Process Biochem 49(12):2228–2234. doi:10.1016/j.procbio.2014.09.020

    Article  CAS  Google Scholar 

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? Trends Biotechnol 27(7):388–397. doi:10.1016/j.tibtech.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Schreiber F, Loeffler B, Polerecky L, Kuypers MMM, de Beer D (2009) Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME J 3(11):1301–1313. doi:10.1038/ismej.2009.55

    Article  CAS  PubMed  Google Scholar 

  • Versteeg GF, Van Swaalj W (1988) Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J Chem Eng Data 33(1):29–34. doi:10.1021/je00051a011

    Article  CAS  Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8(4):347–359. doi:10.1016/0304-4203(80)90024-9

    Article  CAS  Google Scholar 

  • Yaghi B, Houache O (2008) Solubility of nitrous oxide in amine aqueous solutions. J Eng Comput Arch 2(1):1-14

  • Zeng RJ, Yuan ZG, Keller J (2003) Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol Bioeng 81(4):397–404. doi:10.1002/bit.10484

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Pijuan M, Zeng RJ, Yuan Z (2008) Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ Sci Technol 42(22):8260–8265. doi:10.1021/es800650j

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Ganda L, Lim M, Yuan ZG, Kjelleberg S, Ng WJ (2010) Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). Appl Microbiol Biotechnol 88(1):359–369. doi:10.1007/s00253-010-2780-3

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45(15):4672–4682. doi:10.1016/j.watres.2011.06.025

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by funding from Ministry of Environment and Water Resources, Singapore (MEWR), Environment and Water Industry Programme Office (EWI) through project “Energy +: A novel integrated concept for retrofitting and optimizing existing wastewater treatment plants into energy self-sufficiency,” project reference number 2P 10004/95.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wun Jern Ng or Yan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poh, L.S., Jiang, X., Zhang, Z. et al. N2O accumulation from denitrification under different temperatures. Appl Microbiol Biotechnol 99, 9215–9226 (2015). https://doi.org/10.1007/s00253-015-6742-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6742-7

Keywords

Navigation