Skip to main content
Log in

Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The CotA laccase from Bacillus subtilis WD23 was successfully overexpressed in Pichia pastoris, and the production level reached 891.2 U/L. The recombinant CotA laccase was purified to homogeneity. The optimal enzymatic activity was found at pH 4.6, 6.6, and 6.8 for 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), 4-hydroxy-3, 5-dimethoxybenzaldehyde azine (SGZ), and 2, 6-dimethoxyphenol (2, 6-DMP) oxidation, respectively. The maximal enzyme activity was observed at 80 °C with SGZ as a substrate. The kinetic constant K m values for ABTS, SGZ, and 2, 6-DMP were 162 ± 20, 24 ± 2, and 166 ± 18 μM, respectively, with corresponding k cat values of 15 ± 1.0, 7.6 ± 1.5, and 0.87 ± 0.1 s−1. Remarkably, the laccase activity increased to 561.9 % of its initial activity at pH 9.0 after 7 days of incubation and the half-life of laccase inactivation was approximately 3 h at 80 °C, which indicated that the recombinant CotA was a highly thermo-alkali-stable laccase. Bioelectrocatalytic reduction of H2O2 by the CotA laccase was detected when the recombinant CotA was adsorbed on pyrogenation graphite electrodes. Based on the bioelectrocatalytic reduction, a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range of the H2O2 biosensor was from 0.05 to 4.75 mM, with a detection limit of 3.1 μM. The amperometric biosensor for H2O2 by CotA-modified electrode is a novel application for CotA laccase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldrian P (2005) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242. doi:10.1111/j.1574-4976.2005.00010.x

    Article  Google Scholar 

  • Beneyton T, El Harrak A, Griffiths AD, Hellwig P, Taly V (2011) Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications. Electrochem Commun 13:24–27. doi:10.1016/j.elecom.2010.11.003

    Article  CAS  Google Scholar 

  • Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 21:3507–3513. doi:10.1039/B504806K

    Article  Google Scholar 

  • Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM (2010) Mechanisms underlying dioxygen reduction in laccases. Structural and modeling studies focusing on proton transfer. BMC Struct Biol 10:28. dio:10.1186/1472-6807-10-28

  • Brander S, Mikkelsen JD, Kepp KP (2014) Characterization of an alkali- and halide-resistant laccase expressed in E coli: CotA from Bacillus clausii. PLoS ONE 9:e99402. doi:10.1371/journal.pone.0099402

    Article  PubMed  Google Scholar 

  • Damasceno LM, Huang CJ, Batt CA (2012) Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93:31–39. doi:10.1007/s00253-011-3654-z

    Article  PubMed  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41. doi:10.1016/j.ibmb.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20 doi: 1092-2172/99/$04.00+0

    CAS  PubMed  Google Scholar 

  • Durand F, Kjaergaard CH, Suraniti E, Gounel S, Hadt RG, Solomon EI, Mano N (2012) Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens Bioelectron 35:140–146. doi:10.1016/j.bios.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  • Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13:183–193. doi:10.1007/s00775-007-0312-0

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128. doi:10.1016/j.molcatb.2010.11.002

    Article  CAS  Google Scholar 

  • ElKaoutit M, Naranjo-Rodriguez I, Domínguez M, Hernández-Artiga MP, Bellido-Milla D, Hidalgo-Hidalgo de Cisneros JL (2008) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase (HRP) enzyme immobilized in a nafion-sonogel-carbon composite. Electrochim Acta 53:7131–7137. doi:10.1016/j.electacta.2008.04.086

    Article  CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425. doi:10.1074/jbc.M301251200

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, Hong Y, Ge H, Xiao Y (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89:1103–1110. doi:10.1007/s00253-010-2934-3

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M, Mishra S (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol 12:75–87. doi:10.1186/1472-6750-12-75

    Article  CAS  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. doi:10.1007/s00018-009-0169-1

    Article  CAS  PubMed  Google Scholar 

  • Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai Y-J, Liao X-R (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal B Enzym 101:1–6. doi:10.1016/j.molcatb.2013.11.009

    Article  CAS  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456. doi:10.1007/s00253-004-1717-0

    Article  CAS  PubMed  Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224. doi:10.1007/s00253-008-1417-2

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara T, Asano T, Kondo M, Shimomura M (2013) Bioelectrocatalytic O2 reduction with a laccase-bearing poly(3-methylthiophene) film based on direct electron transfer from the polymer to laccase. Bioelectrochemistry 91:28–31. doi:10.1016/j.bioelechem.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xu S, Tang M, Liu L, Gao F, Wang Y (2011) Direct electrochemistry of horseradish peroxidase on graphene-modified electrode for electrocatalytic reduction towards H2O2. Electrochim Acta 56:1144–1149. doi:10.1016/j.electacta.2010.10.034

    Article  CAS  Google Scholar 

  • Loncar N, Bozic N, Lopez-Santin J, Vujcic Z (2013) Bacillus amyloliquefaciens laccase-from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour Technol 147:177–183. doi:10.1016/j.biortech.2013.08.056

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zhao M, Wang TN, Zhao LY, Du MH, Li TL, Li DB (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40. doi:10.1016/j.biortech.2011.07.111

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Wang TN, Xu TF, Wang JY, Wang CL, Zhao M (2013) Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 134:81–86. doi:10.1016/j.biortech.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biolumin Chemilumin 277:18849–18859. doi:10.1074/jbc.M200827200

    CAS  Google Scholar 

  • Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl Microbiol Biotechnol 60:327–335. doi:10.1007/s00253-002-1109-2

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan J, O’Brien MM, McClean K, Dobson ADW (2002) Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29:55–59. doi:10.1038/sj.jim.7000268

    Article  PubMed  Google Scholar 

  • Otterbein L, Record E, Longhi S, Asther M, Moukha S (2000) Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I‐937 and expression in Pichia pastoris. Eur J Biochem 267:1619–1625. doi:10.1046/j.1432-1327.2000.01166.x

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77. doi:10.1016/j.jbiotec.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  • Reiss R, Ihssen J, Thöny-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11:9. doi:10.1186/1472-6750-11-9

    Article  CAS  PubMed  Google Scholar 

  • Safavi A, Farjami F (2010) Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Anal Biochem 402:20–25. doi:10.1016/j.ab.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832. doi:10.1007/s11274-006-9305-3

    Article  CAS  Google Scholar 

  • Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, Gorton L (2005a) Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67:115–124. doi:10.1016/j.bioelechem.2005.02.004

    Article  CAS  Google Scholar 

  • Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005b) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554. doi:10.1016/j.bios.2004.10.003

    Article  CAS  Google Scholar 

  • Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Biotechnol 10:309–326. doi:10.1007/s11157-011-9257-4

    Article  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605. doi:10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  • Thomé-Duret V, Reach G, Gangnerau MN, Lemonnier F, Klein JC, Zhang Y, Hu Y, Wilson GS (1996) Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Anal Chem 68:3822–3826. doi:10.1021/ac960069i

    Article  PubMed  Google Scholar 

  • Wang CL, Zhao M, Li DB, Cui DZ, Lu L, Wei XD (2013) Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil. Afr J Biotechnol 9:5496–5502. doi:10.4028/www.scientific.net/AMR.113-116.725

    Google Scholar 

  • Wang TN, Lu L, Wang JY, Xv TF, Li J, Zhao M (2015) Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: recombinant enzyme characterization and dye decolorization. Process Biochem 50:97–103. doi:10.1016/j.procbio.2014.10.009

    Article  Google Scholar 

  • Xu S, Peng B, Han X (2007) A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosens Bioelectron 22:1807–1810. doi:10.1016/j.bios.2006.07.008

    Article  CAS  Google Scholar 

  • Zhao D, Zhang X, Cui D, Zhao M (2012) Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes. PLoS ONE 7, e38817. doi:10.1371/journal.pone.0038817

  • Zhao D, Cui DZ, Zhang X, Zhao M (2013) Oxidation of aromatic compounds and bioelectrocatalysis of peroxide by a novel white laccase from Myrothecium verrucaria NF-05. Catal Commun 31:48–51. doi:10.1016/j.catcom.2012.11.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported jointly by the “948” project of the National Forestry Bureau (no. 2012-4-03) and the National Natural Science Foundation of China (no. 31470489, 31170553). The authors thank Chunlei Wang for the kind gift of B. subtilis WD23.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhao, M. & Wang, Y. Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide. Appl Microbiol Biotechnol 99, 9483–9493 (2015). https://doi.org/10.1007/s00253-015-6720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6720-0

Keywords

Navigation