Skip to main content
Log in

Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeynayake SW, Panter S, Chapman R, Webster T, Rochfort S, Mouradov A, Spangenberg G (2012) Biosynthesis of proanthocyanidins in White Clover flowers: cross talk within the flavonoid pathway. Plant Physiol 158:666–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abrahams S, Tanner GJ, Larkin PJ, Ashton AR (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 130:561–76

    PubMed Central  CAS  PubMed  Google Scholar 

  • Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11:289–99

    CAS  PubMed  Google Scholar 

  • Albert NW, Griffiths AG, Cousins GR, Verry IM, Williams WM (2015) Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol 205:882–893

    CAS  PubMed  Google Scholar 

  • Aufrère J, Dudilieu M, Andueza D, Poncet C, Baumont R (2013) Mixing sainfoin and lucerne to improve the feed value of legumes fed to sheep by the effect of condensed tannins. Animal 7:82–92

    PubMed  Google Scholar 

  • Bae HD, McAllister TA, Muir AD, Yanke LJ, Bassendowski KA, Cheng KJ (1993) Selection of a method of condensed tannin analysis for studies with rumen bacteria. J Agric Food Chem 41:1256–60

    CAS  Google Scholar 

  • Barry TN, McNabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–72

    CAS  PubMed  Google Scholar 

  • Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, PeerWA HSP, Murphy AS, Harper JF (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci U S A 102:2649–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • David LC, Dechorgnat J, Berquin P, Routaboul JM, Debeaujon I, Daniel-Vedele F, Ferrario-Méry S (2014) Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affinity nitrate transporter NRT2.7. J Exp Bot 65:885–93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Debela E, Tolera A, Eik AO, Salte R (2012) Condensed tannins from Sesbania sesban and Desmodium intortum as a means of Haemonchus contortus control in goats. Trop Anim Health Prod 44:1939–44

    PubMed  Google Scholar 

  • Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19:387–98

    CAS  PubMed  Google Scholar 

  • Dixon RA, Xie D, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    CAS  PubMed  Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–312

    CAS  PubMed  Google Scholar 

  • Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Du H, Wang YB, Xie Y, Liang Z, Jiang SJ, Zhang SS, Huang YB, Tang YX (2013) Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 20:437–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–81

    CAS  PubMed  Google Scholar 

  • Escaray FJ, Rosato M, Pieckenstain FL, Menéndez AB, Rosselló JA, Carrasco P, Ruiz OA (2012) The proanthocyanidin content as a tool to differentiate between Lotus tenuis and L. corniculatus individuals. Phytochem Lett 5:37–40

    CAS  Google Scholar 

  • Escaray FJ, Passeri V, Babuin FM, Marco F, Carrasco P, Damiani F, Pieckenstain FL, Paolocci F, Ruiz OA (2014) Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biol 14:40

    PubMed Central  PubMed  Google Scholar 

  • Foo LY, Jones WT, Porter LJ, Williams VM (1982) Proanthocyanidin polymers of fodder legumes. Phytochemistry 21:933–5

    CAS  Google Scholar 

  • Foo LY, Newman R, Waghorn G, McNabb WC, Ulyatt MJ (1996) Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–24

    CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–27

    CAS  PubMed  Google Scholar 

  • Goplen BP, Howarth RE, Sarkar SK, Lesins K (1980) A search for condensed tannins in annual and perennial species of Medicago, Trigonella, and Onobrychis. Crop Sci 20:801–4

    CAS  Google Scholar 

  • Grabber JH, Zeller WE, Mueller-Harvey I (2013) Acetone enhances the direct analysis of procyanidin- and prodelphinidin-based condensed tannins in Lotus species by the Butanol−HCl−Iron Assay. J Agric Food Chem 61:2669–78

    CAS  PubMed  Google Scholar 

  • Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–5

    CAS  Google Scholar 

  • Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. J Chem Ecol 13:437

    CAS  PubMed  Google Scholar 

  • Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47:490–496

    CAS  PubMed  Google Scholar 

  • Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kahiya C, Mukaratira S, Thamsborg SM (2003) Effects of Acacia nilotica and Acacia karoo diets on Haemonchus contortus infections in goats. Vet Parasitol 115:265–74

    CAS  PubMed  Google Scholar 

  • Kingston-Smith AH, Thomas HM (2003) Strategies of plant breeding for improved rumen function. Ann Appl Biol 142:13–24

    CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–14

    CAS  PubMed  Google Scholar 

  • Koupai-Abyazani MR, McCallum J, Muir AD, Lees GL, Bohm BA, Towers GHN, Gruber MY (1993) Purification and characterization of a proanthocyanidin polymer from seed of alfalfa (Medicago sativa cv. Beaver). J Agric Food Chem 41:565–9

    CAS  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Landau S, Azaizeh H, Muklada H, Glasser T, Ungar ED, Baram H, Abbas N, Markoviccs A (2010) Anthelmintic activity of Pistacia lentiscus foliage in two Middle Eastern breeds of goats differing in their propensity to consume tannin-rich browse. Vet Parasitol 173:280–6

    CAS  PubMed  Google Scholar 

  • Lee JH, Vanguru M, Moore DA, Kannan G, Terrill TH, Kouakou B (2012) Flavor compounds and quality parameters of chevon as influenced by Sericea Lespedeza Hay. J Agric Food Chem 60:3934–9

    CAS  PubMed  Google Scholar 

  • Li Y, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    CAS  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A 86:7092–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makkar HPS, Bliimmel M, Borowy NK, Becker K (1993) Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J Sci Food Agric 61:161

    CAS  Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin accumulating cells of the seed coat. Plant Cell 19:2023–38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall DR, Broué P, Grace J, Munday J (1980) Tannins in pasture legumes: the annual and perennial Medicago species. Aust J Exp Agric 21:47–50

    Google Scholar 

  • Martin JS, Martin MM (1982) Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecology 54:205

    Google Scholar 

  • Max RA, Kimambo AE, Kassuku AA, Mtenga LA, Buttery PJ (2007) Effect of tanniniferous browse meal on nematode faecal egg counts and internal parasite burdens in sheep and goats. J Agric Sci 37:97–106

    Google Scholar 

  • Max RA, Kassuku AA, Kimambo AE, Mtenga LA, Wakelin D, Buttery PJ (2009) The effects of wattle tannin drenches on gastrointestinal nematodes of tropical sheep and goats during experimental and natural infections. J Agric Sci 147:211–8

    CAS  Google Scholar 

  • McMahon LR, McAllister TA, Berg BP, Majak W, Acharya SN, Popp JD, Coulman BE, Wang Y, Cheng KJ (2000) A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can J Plant Sci 80:469–85

    CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–9

    CAS  PubMed  Google Scholar 

  • Min BR, Hart SP, Miller D, Tomita GM, Loetz E, Sahlu T (2005) The effect of grazing forage containing condensed tannins on gastro-intestinal parasite infection and milk composition in Angora does. Vet Parasitol 130:105–13

    CAS  PubMed  Google Scholar 

  • Molan AL, Duncan AJ, Barry TN, McNabb WC (2003) Effects of condensed tannins and crude sesquiterpene lactones extracted from Chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitol Int 52:209–18

    CAS  PubMed  Google Scholar 

  • Moore DA, Terrill TH, Kouakou B, Shaik SA, Mosjidis JA, Miller JE, Vanguru M, Kannan G, Burke JM (2008) The effects of feeding Sericea Lespedeza hay on growth rate of goats naturally infected with gastrointestinal nematodes. J Anim Sci 86:2328–37

    CAS  PubMed  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–70

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-Type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–56

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson KE, Pell AN, Doane PH, Giner-Chavez BI, Schofield P (1997) Chemical and biological assays to evaluate bacterial inhibition by tannins. J Chem Ecol 23:1175–94

    CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Peel GJ, Wright E, Wang Z, Dixon RA (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601–15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A 105:14210–5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151:1114–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pang Y, Cheng X, Huhman DV, Ma J, Peel GJ, Yonekura-Sakakibara K, Saito K, Shen G, Sumner LW, Tang Y, Wen J, Yun J, Dixon RA (2013) Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta 238:139–154

    CAS  PubMed  Google Scholar 

  • Paolocci F, Bovone T, Tosti N, Arcioni S, Damiani F (2005) Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins in Lotus corniculatus leaves. J Exp Bot 56:1093–103

    CAS  PubMed  Google Scholar 

  • Paolocci F, Robbins MP, Madeo L, Arcioni S, Martens S, Damiani F (2007) Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression, analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiol 143:504–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paolocci F, Robbins MP, Passeri V, Hauck B, Morris P, Rubini A, Arcioni S, Damiani F (2011) The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J Exp Bot 62:1189–1200

    CAS  PubMed  Google Scholar 

  • Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59:136–49

    CAS  PubMed  Google Scholar 

  • Pérez AC, Goossens A (2013) Jasmonate signalling: a copycat of auxin signalling? Plant Cell Environ 36:2071–84

    PubMed  Google Scholar 

  • Petersen JC, Hill NS (1991) Enzyme inhibition by Sericea Lespedeza tannins and the use of supplements to restore activity. Crop Sci 31:827–32

    CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) Transparent testa10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puchala R, Min BR, Goetsch AL, Sahlu T (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83:182–6

    CAS  PubMed  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quesada C, Bartolomé B, Nieto O, Gómez-Cordovés C, Hernández T, Estrella I (1996) Phenolic inhibitors of α-amylase and trypsin enzymes by extracts from pears, lentils, and cocoa. J Food Prot 59:185–92

    CAS  Google Scholar 

  • Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B, Bowley S, Westcott N, Coulman B, Lloyd A, Gruber MY (2003) Expression of anthocyanin and proanthocyanidin following transformation of alfalfa with maize Lc. Plant Physiol 132:1–16

    Google Scholar 

  • Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J Anim Sci 73:1516–28

    CAS  PubMed  Google Scholar 

  • Reed JD, Horvath PJ, Allen MS, Van Soest PJ (1985) Gravimetric determination of soluble phenolics including tannins from leaves by precipitation with trivalent ytterbium. J Sci Food Agric 36:255

    CAS  Google Scholar 

  • Repka V (2001) Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures. Biol Plant 44:555–65

    CAS  Google Scholar 

  • Robbins MP, Paolocci F, Hughes JW, Turchetti V, Allison G, Arcioni S, Morris P, Damiani F (2003) Sn, a maize bHLH gene, transactivates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54:239–48

    CAS  PubMed  Google Scholar 

  • Sarwar G, Bell JM, Sharby TF, Jones JD (1981) Nutritional evaluation of meals and meal fractions derived from rape and mustard seed. Can J Anim Sci 61:719–33

    Google Scholar 

  • Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) bHLH transcription factors JA-ASSOCIATED MYC2-LIKE 1, JAM2 and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Tech 91:21–40

    CAS  Google Scholar 

  • Shaik SA, Terrill TH, Miller JE, Kouakou B, Kannan G, Kaplan RM, Bruke JM, Mosjidid JA (2006) Sericea lespedeza hay as a natural deworming agent against gastrointestinal nematode infections in goats. Vet Parasitol 139:150–7

    CAS  PubMed  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–71

    CAS  PubMed  Google Scholar 

  • Simbaya J, Slominski BA, Rakow GFW, Campbell LD, Downey RK, Bell JM (1995) Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrates, and dietary fiber components. J Agric Food Chem 43:2062–6

    CAS  Google Scholar 

  • Smith AP, Nourizadeh SD, Peer WA, Xu J, Bandyopadhyay A, Murphy AS, Goldsbrough PB (2003) Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J 36:433–42

    CAS  PubMed  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–77

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanner GJ, Moate PJ, Davis LH, Laby RH, Li YG, Larkin PJ (1995) Proanthocyanidins (condensed tannin) destabilize plant protein foams in a dose dependent manner. Aust J Agric Res 46:1101–9

    CAS  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–56

    CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–52

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terrill TH, Dykes GS, Shaik SA, Miller JE, Kouakou B, Kannan G, Bruke JM, Mosjidis JA (2009) Efficacy of Sericea lespedeza hay as a natural dewormer in goats: dose titration study. Vet Parasitol 163:52–6

    CAS  PubMed  Google Scholar 

  • Theodoridou K, Aufrère J, Andueza D, Le Morvan A, Picard F, Pourrat J, Baumont R (2012) Effects of condensed tannins in wrapped silage bales of sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Animal 6:245–53

    CAS  PubMed  Google Scholar 

  • Tian L, Pang Y, Dixon RA (2008) Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem Rev 7:445–65

    CAS  Google Scholar 

  • Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109:1766–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waller PJ (1997) Nematode parasite control of livestock in the tropics/subtropics: the need for novel approaches. Int J Parasitol 27:488–94

    Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wenzel CL, Hester Q, Mattsson J (2008) Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Plant Cell Physiol 49:457–68

    CAS  PubMed  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–9

    CAS  PubMed  Google Scholar 

  • Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91–102

    CAS  PubMed  Google Scholar 

  • Xie DY, Sharma B, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–69

    CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Shimada N, Ayabe S, Aoki T, Sakuta M (2010a) Transcriptional control of the dihydroflavonol 4-reductase multigene family in Lotus japonicus. J Plant Res 123:801–805

    CAS  PubMed  Google Scholar 

  • Yoshida K, Kume N, Nakaya Y, Yamagami A, Nakano T, Sakuta M (2010b) Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus. Plant Cell Physiol 51:912–22

    CAS  PubMed  Google Scholar 

  • Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Huhman D, Shadle G, He XZ, Sumner L, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Wu YM, Tang YX (2010) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with MeJA/nitric oxide elicitation in Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 88:737–750

    CAS  PubMed  Google Scholar 

  • Zhou ML, Hou HL, Zhu XM, Shao JR, Wu YM, Tang YX (2011a) GmMYBZ2 acts as a repressor of catharanthine biosynthesis pathway in Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 91:1095–1105

    CAS  PubMed  Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011b) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol 90:1229–1239

    CAS  PubMed  Google Scholar 

  • Zhou ML, Zhang CC, Wu YM, Tang YX (2013) Metabolic engineering of gossypol in cotton. Appl Microbiol Biotechnol 97:6159–6165

    CAS  PubMed  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31372361) and National Program on Key Basic Research Project (973 Program) (Grant No. 2014CB138701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Wei, L., Sun, Z. et al. Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Appl Microbiol Biotechnol 99, 3797–3806 (2015). https://doi.org/10.1007/s00253-015-6533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6533-1

Keywords

Navigation