Skip to main content

Advertisement

Log in

Distribution, industrial applications, and enzymatic synthesis of d-amino acids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

d-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, d-amino acids have recently received more and more attention. Enzymes including d-hydantoinase, N-acyl-d-amino acid amidohydrolase, d-amino acid amidase, d-aminopeptidase, d-peptidase, l-amino acid oxidase, d-amino acid aminotransferase, and d-amino acid dehydrogenase can be used for d-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, d-amino acid dehydrogenase method not only produces d-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Park J, Fukumoto Y, Fujita E, Tanaka T, Washio T, Otsuka S, Shimizu T, Watanabe K (1999) Occurrence of d-amino acids in fish sauces and other fermented fish products. Fish Sci 65:637–641

    CAS  Google Scholar 

  • Akita H, Suzuki H, Doi K, Ohshima T (2014) Efficient synthesis of d-branched-chain amino acids and their labeled compounds with stable isotopes using d-amino acid dehydrogenase. Appl Microbiol Biotechnol 98:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Yamaguchi S (2005) Dynamic kinetic resolution of amino acid amide catalyzed by d-aminopeptidase and α-amino-ε-caprolactam racemase. J Am Chem Soc 127:7696–7697

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Nakazawa A, Kato Y, Kondo K (1989) Properties of a novel d-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 264:14233–14239

    CAS  PubMed  Google Scholar 

  • Asano Y, Ito H, Dairi T, Kato Y (1996) An alkaline d-stereospecific endopeptidase with β-lactamase activity from Bacillus cereus. J Biol Chem 271:30256–30262

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Komeda H, Flickinger MC (2009) d-Aminopeptidase and alkaline d-peptidase. In: Encyclopedia of Industrial Biotechnology, 10.1002/9780470054581.eib251. John Wiley & Sons, Inc. doi:10.1002/9780470054581.eib251

  • Bae H-S, Lee S-G, Hong S-P, Kwak M-S, Esaki N, Soda K, Sung M-H (1999) Production of aromatic d-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. J Mol Catal B Enzym 6:241–247

    Article  CAS  Google Scholar 

  • Bodanszky M, Perlman D (1969) Peptide antibiotics. Science 163:352–358

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals-examples and perspectives. J Mol Catal B Enzym 5:1–11

    Article  CAS  Google Scholar 

  • Brandão PFB, Verseck S, Syldatk C (2004) Bioconversion of D,L-tert-leucine nitrile to D-tert-leucine by recombinant cells expressing nitrile hydratase and D-selective amidase. Eng Life Sci 4:547–556

  • Brückner H, Hausch M (1989) Gas chromatographic detection of d-amino acids as common constituents of fermented foods. Chromatographia 28:487–492

    Article  Google Scholar 

  • Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V (1999) Gramicidin d-conformation, dynamics and membrane ion transport. Pept Sci 51:129–144

    Article  CAS  Google Scholar 

  • Fotheringham, Taylor PPAH, Ton JLP (1998) Preparation of d-amino acids by direct fermentative means. United States Patent 5728555

  • Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  • Fujii N (2002) d-Amino acids in living higher organisms. Orig Life Evol Biosph 32:103–127

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen X, Liu W, Feng J, Wu Q, Hua L, Zhu D (2012) A novel meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum: overexpression, characterization, and potential for d-amino acid synthesis. Appl Environ Microbiol 78:8595–8600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Huang F, Feng J, Chen X, Zhang H, Wang Z, Wu Q, Zhu D (2013) Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for d-phenylalanine synthesis. Appl Environ Microbiol 79:5078–5081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillman KW, Starrett JE, Parker MF, Xie K, Bronson JJ, Marcin LR, McElhone KE, Bergstrom CP, Mate RA, Williams R, Meredith JE, Burton CR, Barten DM, Toyn JH, Roberts SB, Lentz KA, Houston JG, Zaczek R, Albright CF, Decicco CP, Macor JE, Olson RE (2010) Discovery and evaluation of BMS-708163, a potent, selective and orally bioavailable γ-secretase inhibitor. Med Chem Lett 1:120–124

    Article  CAS  Google Scholar 

  • Grenby TH (1991) Intense sweeteners for the food industry: an overview. Trends Food Sci Technol 2:2–6

    Article  CAS  Google Scholar 

  • Grifantini R, Galli G, Carpani G, Pratesi C, Frascotti G, Grandi G (1998) Efficient conversion of 5-substituted hydantoins to d-α-amino acids using recombinant Escherichia coli strains. Microbiology 144:947–954

    Article  CAS  PubMed  Google Scholar 

  • Hanson RL, Johnston RM, Goldberg SL, Parker WL, Goswami A (2013) Enzymatic preparation of an R-amino acid intermediate for a γ-secretase inhibitor. Org Process Res Dev 17:693–700

    Article  CAS  Google Scholar 

  • Heijenoort JV (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519

    Article  PubMed  Google Scholar 

  • Heller B (1982) d-phenylalanine treatment. Unites States Patent 4355044

  • Hertel C, Hoffmann T, Jakob-Roetne R, Norcross RD (2000) For treatment of diseases associated with amyloidosis, such as alzheimer’s disease, diabetes mellitus, familial amyloid polyneuropathy, scrapie, and kreuzfeld-jacob disease. United States Patent 6103910

  • Hils M, Münch P, Altenbuchner J, Syldatk C, Mattes R (2001) Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. Appl Microbiol Biotechnol 57:680–688

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DW, Ferguson KE (1994) Substrate induced respiration in soil amended with different amino acid isomers. Appl Soil Ecol 1:75–81

    Article  Google Scholar 

  • Hsu C-S, Lai W-L, Chang W-W, Liaw S-H, Tsai Y-C (2002) Structural-based mutational analysis of d-aminoacylase from Alcaligenes faecalis DA1. Protein Sci 11:2545–2550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isobe K, Tamauchi H, Fuhshuku K-i, Nagasawa S, Asano Y (2010) A simple enzymatic method for production of a wide variety of d-amino acids using L-amino acid oxidase from Rhodococcus sp. AIU Z-35-1. Enzyme research 2010

  • Kato S, Ishihara T, Hemmi H, Kobayashi H, Yoshimura T (2011) Alterations in d-amino acid concentrations and microbial community structures during the fermentation of red and white wines. J Biosci Bioeng 111:104–108

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim GJ, Cheon YH, Kim H-S (2000) Directed evolution of a novel N-carbamoylase/d-hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol Bioeng 68:211–217

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Shimizu Y, Mutaguchi Y, Doi K, Ohshima T (2013) Characterization of d-amino acid aminotransferase from Lactobacillus salivarius. J Mol Catal B Enzym 94:15–22

    Article  CAS  Google Scholar 

  • Komeda H, Asano Y (2000) Gene cloning, nucleotide sequencing, and purification and characterization of the d-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. Eur J Biochem 267:2028–2035

    Article  CAS  PubMed  Google Scholar 

  • Komeda H, Asano Y (2008) A novel d-stereoselective amino acid amidase from Brevibacterium iodinum: gene cloning, expression and characterization. Enzyme Microb Technol 43:276–283

    Article  CAS  Google Scholar 

  • Komeda H, Ishikawa N, Asano Y (2003) Enhancement of the thermostability and catalytic activity of d-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3 by directed evolution. J Mol Catal B Enzym 21:283–290

    Article  CAS  Google Scholar 

  • Kumar J, Sim V (2014) d-Amino acid-based peptide inhibitors as early or preventative therapy in alzheimer disease. Prion 8:119–124

    Article  CAS  PubMed  Google Scholar 

  • Lee D-C, Kim H-S (1998) Optimization of a heterogeneous reaction system for the production of optically active d-amino acids using thermostable d-hydantoinase. Biotechnol Bioeng 60:729–738

    Article  CAS  PubMed  Google Scholar 

  • Martín J, Casqueiro J, Kosalková K, Marcos A, Gutiérrez AFFS (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Leeuwenhoek 75:21–31

    Article  PubMed  Google Scholar 

  • Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, Lallone R, Fogelman AM (2002) Oral administration of an Apo A-I mimetic peptide synthesized from d-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105:290–292

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Suzuki A, Komeda H, Yamaguchi S, Asano Y, Yamane T (2007) Crystal structure and functional characterization of a d-stereospecific amino acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-recognizing proteins. J Mol Biol 368:79–91

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Suzuki A, Mizushima T, Komeda H, Asano Y, Yamane T (2008) Structures of d-amino acid amidase complexed with l-phenylalanine and with l-phenylalanine amide: insight into the d-stereospecificity of d-amino acid amidase from Ochrobactrum anthropi SV3. Acta Crystallogr D 64:331–334

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Furukawara T (2014) Oil-in-water type emulsion skin cosmetic. United States Patent 8607750B2

  • Pozo C, Rodelas B, de la Escalera S, González-López J (2002) d, l-Hydantoinase activity of an Ochrobactrum anthropi strain. J Appl Microbiol 92:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Radkov A, Moe L (2014) Bacterial synthesis of d-amino acids. Appl Microbiol Biotechnol 98:1–12

    Article  Google Scholar 

  • Reich E (1963) Biochemistry of actinomycins. Cancer Res 23:1428–1441

    CAS  PubMed  Google Scholar 

  • Robinson T (1976) d-Amino acids in higher plants. Life Sci 19:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Sanchez CJ, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK, Wenke JC (2014) d-Amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:4353–4361

    Article  PubMed Central  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner RJ, Aikens J, Royer S, DeFilippi L, Yap A, Holzle D, Somers N, Fotheringham IG (2004) d-Amino acid tolerant hosts for d-hydantoinase whole cell biocatalysts. Eng Life Sci 4:517–520

    Article  CAS  Google Scholar 

  • Vedha-Peters K, Gunawardana M, Rozzell JD, Novick SJ (2006) Creation of a broad-range and highly stereoselective d-amino acid dehydrogenase for the one-step synthesis of d-amino acids. J Am Chem Soc 128:10923–10929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veine D, Yao H, Stafford D, Fay K, Livant D (2014) A d-amino acid containing peptide as a potent, noncovalent inhibitor of α5β1 integrin in human prostate cancer invasion and lung colonization. Clin Exp Metastasis 31:379–393

    Article  CAS  Google Scholar 

  • Vranova V, Zahradnickova H, Janous D, Skene K, Matharu A, Rejsek K, Formanek P (2012) The significance of d-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil 354:21–39

    Article  CAS  Google Scholar 

  • Wakayama M, Moriguchi M (2001) Comparative biochemistry of bacterial N-acyl-d-amino acid amidohydrolase. J Mol Catal B Enzym 12:15–25

    Article  CAS  Google Scholar 

  • Wakayama M, Yoshimune K, Hirose Y, Moriguchi M (2003) Production of d-amino acids by N-acyl-d-amino acid amidohydrolase and its structure and function. J Mol Catal B Enzym 23:71–85

    Article  CAS  Google Scholar 

  • Walters DE (1995) Using models to understand and design sweeteners. J Chem Educ 72:680–683

    Article  CAS  Google Scholar 

  • Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS (2007) Potent d-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci U S A 104:16828–16833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang H, Zheng G, Peng X, Qiang B, Yuan J (2003) d-Amino acids and d-Tyr-tRNATyr deacylase: stereospecificity of the translation machine revisited. FEBS Lett 552:95–98

    Article  CAS  PubMed  Google Scholar 

  • Yano S, Haruta H, Ikeda T, Kikuchi T, Murakami M, Moriguchi M, Wakayama M (2011) Engineering the substrate specificity of Alcaligenes d-aminoacylase useful for the production of d-amino acids by optical resolution. J Chromatogr B 879:3247–3252

    Article  CAS  Google Scholar 

  • Zhang J, Xu Y, Li R (2013) Preparation method of aspoxicillin. China Patent 103333180A

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (grant no. 21402109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Ma, Q. & Zhu, H. Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 99, 3341–3349 (2015). https://doi.org/10.1007/s00253-015-6507-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6507-3

Keywords

Navigation