Skip to main content
Log in

A new fluorimetric method for the detection and quantification of siderophores using Calcein Blue, with potential as a bacterial detection tool

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The presence of microorganisms in biological fluids like urine and blood is an indication of vulnerability to infections. Iron is one of the important micronutrients required for bacterial growth. In an iron-deficit environment, bacteria release high-affinity iron-chelating compounds called siderophores which can be used as non-invasive target molecules for the detection of such pathogens. However, only limited reagents and procedures are available to detect the presence of these organic molecules. The present study aims at detecting the presence of siderophores in the iron-depleted media, exploiting the reversible quenching of Calcein Blue and iron(III) complex. The fluorescence of Calcein Blue is known to be quenched in the presence of iron(III); if a stronger chelator removes this ion from the fluorophore, the fluorescence of the fluorophore is regained. This behaviour of the fluorophore was exploited to detect and quantify siderophores down to 50 and 800 nM equivalent of standard siderophore, deferroxamine mesylate (desferal) in Dulbecco’s PBS and siderophore quantification (SPQ) medium, respectively. The siderophores released by pathogens, equivalent to standard desferal, were in the range of 1.29 to 5.00 μM and those for non-pathogens were below 1.19 μM. The simple, sensitive and cost-effective method performed in a 96-well plate was able to detect and quantify iron chelators within 7–8 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, De Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS One 7(10):e46754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adler C, Corbalan NS, Peralta DR, Pomares MF, De Cristóbal RE, Vincent PA (2014) The alternative role of Enterobactin as an oxidative stress protector allows Escherichia coli colony development. PLoS One 9(1):e84734

    Article  PubMed Central  PubMed  Google Scholar 

  • Alagumaruthanayagam A, Sankaran K (2012) High-throughput fluorescence-based early antibiogram determination using clinical Escherichia coli isolates as case study. Microb Drug Resist 18(6):586–596

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SK, Clements MO (1993) Isolation and characterization of Bordetella bronchiseptica mutants deficient in siderophore activity. J Bacteriol 175(4):1144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Csaky TZ (1948) On the estimation of bound hydroxamine in biological materials. Acta Chem Scand 2:450–454

    Article  CAS  Google Scholar 

  • Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE (2004) Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72(1):29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fuorescence study of chelator action in living cells. Blood 106(9):3242–3250

    Article  CAS  PubMed  Google Scholar 

  • Himpsl SD, Pearson MM, Arewång CJ, Nusca TD, Sherman DH, Mobley HL (2010) Proteobactin and a Yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 78(1):138–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huitink GM, Poe DP, Diehl H (1974) On the properties of Calcein Blue. Talanta 21(12):1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Husain S (2008) Effect of ferric iron on siderophore production and pyrene degradation by Pseudomonas fluorescens 29 L. Curr Microbiol 57:331–334

    Article  CAS  PubMed  Google Scholar 

  • Joshi F, Archana G, Desai A (2006) Siderophore cross-utilization amongst Rhizospheric Bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141–147

    Article  CAS  PubMed  Google Scholar 

  • Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS 99(10):7072–7077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liles MR, Scheel TA, Cianciotto NP (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182(3):749–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcelis JH, Daas-Slagt HJD, Hoogkamp-Korstanje JAA (1978) Iron requirement and chelator production of staphylococci, Streptococeus faecalis and Enterobacteriaceae. Antonie Van Leeuwenhoek 44(3–4):257–267

    Article  CAS  PubMed  Google Scholar 

  • Marenco MJC, Fowley C, Hyland BW, Galindo-Riaño D, Sahoo SK, Callan JF (2012) A new fluorescent sensor for the determination of iron(III) in semi-aqueous solution. J Fluoresc 22:795–798

    Article  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murugappan RM, Karthikeyan M, Aravinth A, Alamelu MR (2012) Siderophore-mediated iron uptake promotes yeast–bacterial symbiosis. Appl Biochem Biotechnol 168:2170–2183

    Article  CAS  PubMed  Google Scholar 

  • Payne SM (1980) Synthesis and utilization of siderophores by Shigella flexneri. J Bacteriol 143(3):1420–1424

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu DH, Huang ZL, Zhou T, Shen C, Hider RC (2010) In vitro inhibition of bacterial growth by iron chelators. FEMS Microbiol Lett 314(2):107–111

    Article  PubMed  Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866

    Article  CAS  PubMed  Google Scholar 

  • Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chinchlokar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Seto D, Maki T, Soh N, Nakano K, Ishimatsu R, Imato T (2012) A simple and selective fluorometric assay for dopamine using a Calcein Blue–Fe2+ complex fluorophore. Talanta 94:36–43

    Article  CAS  PubMed  Google Scholar 

  • Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6(8):e1000949

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas F, Serratrice G, Béguin C, Aman ES, Pierre JL, Fontecave M, Laulhère JP (1999) Calcein as a fluorescent probe for ferric iron: application to iron nutrition in plant cells. J Biol Chem 274:13375–13383

    Article  CAS  PubMed  Google Scholar 

  • Vagarali MA, Karadesai SG, Patil CS, Metgud SC, Mutnal MB (2008) Haemagglutination and siderophore production as the urovirulence markers of uropathogenic Escherichia coli. Indian J Med Microbiol 26(1):68–70

    Article  CAS  PubMed  Google Scholar 

  • Vesper SJ, Dearborn DG, Elidemir O, Haugland RA (2000) Quantification of siderophore and hemolysin from Stachybotrys chartarum Strains, including a strain isolated from the lung of a child with pulmonary Hemorrhage and Hemosiderosis. Appl Environ Microbiol 66(6):2678–2681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, Sun P, Wu F, Tian C, Niederweis M (2013) Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 9(1):e1003120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West SA, Buckling A (2002) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc B 270(1510):37–44

    Article  Google Scholar 

  • Wilikins DH (1960) Calcein Blue—a new metalfluorechromic indicator for chelatometric titrations. Talanta 4(3):182–184

    Article  Google Scholar 

  • Yoshida H, Ozawa T, Jitsukawa K, Einagat H (1993) Kinetics and mechanism of complex formation reaction of iron(III) with 4-methyl-s-(carboxymethyl)aminomethyl umbelliferrone and related ligands: role of substituent groups on nitrogen donor atoms on the reaction. Polyhedron 12(11):1319–1328

    Article  CAS  Google Scholar 

  • Zawadzkaa AM, Kimb Y, Maltsevab N, Nichiporuka R, Fanb Y, Joachimiakb A, Raymonda KN (2009) Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. PNAS 106(51):21854–21859

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Suresh Lingham, M/s Trivitron Pvt Ltd. for clinical samples, Dr. Sridhar, Dept. of Microbiology, Sri Ramachandra University, for providing standard bacterial cultures and Dr. J. Saibaba, National Agro Foundation, Chennai for the analytical data. We acknowledge the financial support from Centre with Potential for Excellence in Environmental Science (CPEES) of University Grants Commission.

Conflict of interest

There is no conflict of interests for the authors for submitting this article. This work was supported by the Centre with Potential for Excellence in Environmental Science (CPEES) of University Grants Commission, India. They have no involvements in the study design, in the collection, analysis and interpretation of data, in the writing of the article and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Sankaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaranarayanan, R., Alagumaruthanayagam, A. & Sankaran, K. A new fluorimetric method for the detection and quantification of siderophores using Calcein Blue, with potential as a bacterial detection tool. Appl Microbiol Biotechnol 99, 2339–2349 (2015). https://doi.org/10.1007/s00253-015-6411-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6411-x

Keywords

Navigation