Abstract
A novel bacterial strain containing biogenic magnetic nanoparticles (BMNPs) was isolated from the sediments of Songhua River in Harbin, China, and was identified as Burkholderia sp. YN01. Extracted BMNPs from YN01 were characterized as pure face-centered cubic Fe3O4 with an average size of 80 nm through transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hysteresis parameters of the BMNP samples such as Bc and Bcr and ratios Mrs/Ms were deduced as 35.6 mT, 43.2 mT, and 0.47, respectively, indicating that the BMNPs exhibit a ferromagnetic behavior. This is the first report concerning on biogenic Fe3O4 NPs produced in Burkholderia genus. Significantly, the BMNPs were proved to possess intrinsic peroxidase-like activity that could catalyze the oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. Kinetic analysis indicates that the catalytic behavior is in accord with typical Michaelis–Menten kinetics and follows ping-pong mechanism. The catalytic constants (K cat) were 6.5 × 104 s−1 and 0.78 × 104 s−1 with H2O2 and TMB as substrate, respectively, which was higher than that of horseradish peroxidase (HRP). Electron spin resonance (ESR) spectroscopy experiments showed that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. The origin of peroxidase-like activity is also associated with their ability to transfer electron between electrode and H2O2 according to an electrochemical study. As a novel peroxidase mimetic, the BMNPs were employed to offer a simple, sensitive, and selective colorimetric method for H2O2 and glucose determination, and the BMNPs could efficiently catalyze the degradation of phenol and Congo red dye.










Similar content being viewed by others
References
Agranoff DD, Krishna S (1998) Metal ion homeostasis and intracellular parasitism. Mol Microbiol 28:403–412. doi:10.1046/j.1365-2958.1998.00790.x
Alphandéry E, Amor M, Guyot F, Chebbi I (2012) The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties. Appl Microbiol Biotechnol 96:663–670. doi:10.1007/s00253-012-4199-5
Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance. J Hazard Mater 180:38–49. doi:10.1016/j.jhazmat.2010.04.105
André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder HC, Müller WEG, Tremel W (2010) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. doi:10.1002/adfm.201001302
Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230. doi:10.1038/nrmicro842
Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379. doi:10.1126/ science.170679
Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238. doi:10.1146/annurev.mi.36.100182.001245
Borelli V, Trevisan E, Vita F, Bottin C, Melato M, Rizzardi C, Zabucchi G (2012) Peroxidase-like activity of ferruginous bodies isolated by exploiting their magnetic property. J Toxicol Environ Health 75:603–623. doi:10.1080/15287394. 2012.688478
Brahler M, Georgieva R, Buske N, Müller A, Müller S, Pinkernelle J, Teichgräber U, Voigt A, Bäumler H (2006) Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett 6:2505–2509. doi:10.1021/nl 0618501
Calugay RJ, Okamura Y, Wahyudi AT, Takeyama H, Matsunaga T (2004) Siderophore production of a periplasmic binding protein kinase gene defective mutant in Magnetospirillum magneticum AMB-1. Biochem Biophys Res Commun 323:852–857. doi:10.1016/j.bbrc.2004.08.179
Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39:263–270. doi:10.1021/bi990729o
Chaudhari KN, Chaudhari NK, Yu JS (2012) Peroxidase mimic activity of hematite iron oxides (a-Fe2O3) with different nanostructures. Catal Sci Technol 2:119–124. doi:10.1039/c1cy00124h
Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 97:14268–14272. doi:10.1073/pnas.97.26.14268
Chen Z, Yin J, Zhou Y, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activity of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012. doi:10.1021/nn300291r
Dai ZH, Liu SH, Bao JC, Jui HX (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15:4321–4326. doi:10.1002/chem. 200802158
Durán N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288. doi:10.1007/s00253-012-4118-9
Dutz S, Clement JH, Eberbeck D, Gelbrich T, Hergt R, Muller R, Wotschadlo J, Zeisberger M (2009) Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater 321:1501–1504. doi:10.1016/j. jmmm.2009.02.073
Enda M, Malcolm R, Ciarao O (1996) Phenol removal by modified peroxidase. Enzym Microb Technol 67:227–236. doi:10.1002/(SICI)1097-4660(199611) 67-J
Flies CB, Jonkers HM, de Beer D, Bosselmann K, Bottcher ME, Schüler D (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in fresh water microcosms. FEMS Microbiol Ecol 52:185–195. doi:10.1016/j.femsec.2004.11.006
Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. doi:10.1038/nnano.2007.260
Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841
Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL (2012) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol 14:1722–1729. doi:10.1111/j.1462-2920.2012.02707. x
Han L, Li S, Yang Y, Zhao F, Huang J, Chang J (2007) Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. J Magn Magn Mater 313:236–242. doi:10.1016/j.jmmm.2007.01.004
Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69:3744–3754. doi:10.1128/IAI.69.6.3744-3754.2001
Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. J Biol Chem 257:3669–3675
Khalavka Y, Becker J, Sönnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131:1871–1875. doi:10.1021/ja806766w
Knopp D, Tang D, Niessner R (2009) Bioanalytical applications of biomolecule- functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30. doi:10.1016/j.aca.2009.05.037
Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed 45:7824–7828. doi:10.1002/ange.200603068
Liu C, Yu C, Tseng W (2012) Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Chim Acta 745:143–148. doi:10.1016/j.aca.2012.08.011
Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492. doi:10.1007/s00253-005-0179-3
Matsunaga T, Suzuki T, Tanaka M, Arakaki A (2007) Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechol 25:182–188. doi:10.1016/j.tibtech. 2007.02.002
Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542. doi:10.1039/c2cc17013b
Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361–4371. doi:10.1093/emboj/18.16.4361
Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534. doi:10.1016/S0038-1098(01)00146-6
Schüler D, Spring S, Bazylinski DA (1999) Improved technique for isolation of magnetotactic spririlla from a freshwater sediment and their phylogenetic characterization. Syst Appl Microbiol 22:466–471. doi:10.1016/S0723-2020(99) 80056-3
Seabra AB, Haddad P, Durán N (2013) Biogenic synthesis of nanostructurated iron compounds: applications and perspectives. IET Nanobiotechnol pp:1-10. doi: 10.1049/iet-nbt.2012.0047
Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011a) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697. doi:10.1039/C1CC11943E
Shi W, Zhang X, He S, Huang Y (2011b) CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun 47:10785–10787. doi:10.1039/c1cc14300j
Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210. doi:10.1002/adma.200903783
Vainshtein M, Suzina N, Kudryashova E, Ariskina E (2002) New magnet-sensitive structures in bacterial and archaeal cells. Biol Cell 94:29–35. doi:10.1016/S0248- 4900(02)01179-6
Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Sov Rev 42:6060–6093. doi:10.1039/ c3cs35486e
Wright H, Nicell JA (1999) Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresour Technol 70:69–79. doi:10.1016/S0960-8524(99) 00007-3
Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449. doi:10.1016/j.apsusc.2007.09.063
Yua F, Huanga YZ, Colea AJ, Yang VC (2009) The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 30:4716–4722. doi:10.1016/j.biomaterials.2009.05.005
Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as mimic for peroxidase. Microchim Acta 174:183–189. doi:10.1007/s00604-011-0600-9
Zhu M, Huang X, Liu L (1997) Spectrophotometric determination of hydrogen peroxide by using the cleavage of eriochrome black T inthe presence of peroxidase. Talanta 44:1407–1412. doi:10.1016/S0039-9140(97)00012-X
Acknowledgments
The authors acknowledge the financial support from State Forestry Administration 948 project under the project number of 2012-4-03 and National Natural Science Foundation of China under the project number of 31170553 and 21273057.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 776 kb)
Rights and permissions
About this article
Cite this article
Pan, Y., Li, N., Mu, J. et al. Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biotechnol 99, 703–715 (2015). https://doi.org/10.1007/s00253-014-5938-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-5938-6