Skip to main content
Log in

The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 31 May 2014

Abstract

The phyL gene encoding phytase from the industrial strain Bacillus licheniformis ATCC 14580 (PhyL) was cloned, sequenced, and overexpressed in Escherichia coli. Biochemical characterization demonstrated that the recombinant enzyme has an apparent molecular weight of nearly 42 kDa. Interestingly, this enzyme was optimally active at 70–75 °C and pH 6.5–7.0. This enzyme is distinguishable by the fact that it preserved more than 40 % of its activity at wide range of temperatures from 4 to 85 °C. This new phytase displayed also a high specific activity of 316 U/mg. For its maximal activity and thermostability, this biocatalyst required only 0.6 mM of Ca2+ ion and exhibited high catalytic efficiency of 8.3 s−1 μM−1 towards phytic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angel R, Tamim NM, Applegate TJ, Dhandu AS, Ellestad LE (2002) Phytic acid chemistry: influence on phytin–phosphorus availability and phytase efficacy. J Appl Poult Res 11:471–480

    Article  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Boyce A, Walsh G (2006) Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. J Environ Sci Health A 41:789–798

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brugger R, SimoesNunes C, Hug D, Vogel K, Guggenbuhl P, Mascarello F, Augem S, Wyss M, van Loon APGM, Pasamontes L (2004) Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigata. Appl Microbiol Biotechnol 63:383–389

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, Luo Z, Li D (2007) Application of microbial phytase in fish feed. Enzyme Microb Tech 40:497–507

    Article  CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. Crit Rev Food Sci 13:297–335

    Article  CAS  Google Scholar 

  • Cho EA, Kim EJ, Pan JG (2011) Adsorption immobilization of Escherichia coli phytase on probiotic Bacillus polyfermenticus spores. Enzyme Microb Tech 49:66–71

    Article  CAS  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  PubMed  Google Scholar 

  • Dassa J, Marck C, Boquet PL (1990) The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol 172:5497–5500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edward JM, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  Google Scholar 

  • Escobin-Mopera L, Ohtani M, Sekiguchi S, Sone T, Abe A, Tanaka M, Meevootisom V, Asano K (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J of Biosci Bioeng 113:562–567

    Article  CAS  Google Scholar 

  • Farhat A, Chouayekh H, Ben Farhat M, Bouchaala K, Bejar S (2008) Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 40:127–135

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Sun J, Qian L (2008a) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Sun J, Qian L (2008b) Effect of Ca2+ on beta-propeller phytases. Protein Peptide Lett 15:39–42

    Article  CAS  Google Scholar 

  • Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323

    Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44:125–140

    CAS  Google Scholar 

  • Gulati HK, Chadha BS, Saini HS (2007) Production and characterization of thermostable alkamine phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34:91–98

    Article  CAS  PubMed  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Luo H, Wang Y, Fu D, Shao N, Yang P, Meng K, Yao B (2009a) Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J Microbiol Biotechnol 19:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, Zhan Z, Yao B (2009b) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83:249–259

    Article  CAS  PubMed  Google Scholar 

  • In MJ, Seo SW, Oh NS (2008) Fermentative production and application of acid phytase by Saccaromyces cerevisiae CY strain. Afr J Biotechnol 17:3115–3120

    Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure:pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2673

    Google Scholar 

  • Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol 30:325–329

    Article  CAS  PubMed  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts C, Boze H, Moulin G, Galzy P (1992) Utilization of phytate by some yeast. Biotechnol Lett 14:61–66

    Article  CAS  Google Scholar 

  • Li X, Chi Z, Liu Z, Li J, Wang X (2009) Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res 113:24–32

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhao A, Wang X, Jin X, Li J, Yu M (2013) Cloning, overexpression, and functional characterization of a phytase from the genus Bacillus. J Mol Microb Biotech 23:193–202

    Article  CAS  Google Scholar 

  • Maenz DD, Engele-Schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Animal Feed Scien Technol 81:177–192

    Google Scholar 

  • Martinez AC, Parsons CM, Baker DH (2006) Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poultry Sci 85:470–475

    Article  Google Scholar 

  • Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, van Loon AP (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373–381

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  PubMed  Google Scholar 

  • Nayini NR, Markakis P (1984) The phytase of yeast. Food SciTechnol 17:126–132

    Google Scholar 

  • Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Oh BC, Chang BS, Park KW, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676

    Article  CAS  PubMed  Google Scholar 

  • Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  CAS  PubMed  Google Scholar 

  • Ostanin K, Harms EH, Stevis PE, Kuciel R, Zhou MM, van Etten RL (1992) Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem 267:22830–22836

    CAS  PubMed  Google Scholar 

  • Park SC, Choi YW, Oh TK (1999) Comparative enzymatic hydrolysis of phytate in various animal feedstuff with two different phytases. J Vet Med Sci 61:1257–1259

    Article  CAS  PubMed  Google Scholar 

  • Parry R (1998) Agricultural phosphorus and water quality: a U.S. Environmental Protection Agency perspective. J Environ Qual 27:258–261

    Article  CAS  Google Scholar 

  • Ragon M, Neugnot-Roux V, Chemardin P, Moulin G, Boze H (2008) Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expres Purif 58:275–283

    Article  CAS  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Food Res 28:1–92

    Article  CAS  PubMed  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 10:R77

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Tech 135:1–41

    Article  CAS  Google Scholar 

  • Sharpley A, Daniel TC, Sims JT, Pote DH (1996) Determining environmentally sound soil phosphorus levels. J Soil Water Conserv 51:160–166

    Google Scholar 

  • Shi P, Huang H, Wang Y, Luo H, Wu B, Meng K, Yang P, Yao B (2008) A novel phytase gene appA from Buttiauxella sp. GC21 isolated from grass carp intestine. Aquaculture 275:70–75

    Article  CAS  Google Scholar 

  • Shin S, Ha NC, Oh BC, Oh TK, Oh BH (2001) Enzyme mechanism and catalytic property of beta propeller phytase. Structure 9:851–858

    Article  CAS  PubMed  Google Scholar 

  • Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95:405–418

    Article  CAS  PubMed  Google Scholar 

  • Sohail SS, Roland DA (1999) Influence of supplemental phytase on performance of broilers four to six weeks of age. Poult Sci 78:550–555

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ, (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Tomaschy A, Brugger R, Lehmann M, Svendsen A, Vogel K, Kostrewa D, Lassen SF, Burger D, Kronenberger A, van Loon APGM, Pasamontes L, Wyss M (2002) Engineering of phytase for improved activity at low pH. Appl Environ Microb 68:1907–1913

    Article  Google Scholar 

  • Tran TT, Mamo G, Mattiasson B, Hatt-Kaul R (2010) A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. J Ind Microbiol Biotechnol 37:279–287

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Mamo G, Buxo L, Le NN, Gaber Y, Mattiasson B, Hatt-Kaul R (2011) Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Enzyme Microb Tech 49:177–182

    Article  CAS  Google Scholar 

  • Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197

    Article  CAS  PubMed  Google Scholar 

  • Ullah AH, Gibson DM (1987) Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91

    Article  CAS  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzyme Microb Tech 35:3–14

    Article  CAS  Google Scholar 

  • Watanabe T, Ikeda H, Masaki K, Fujii T, Iefuji H (2009) Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. J Biosci Bioeng 108:225–230

    Article  CAS  PubMed  Google Scholar 

  • Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2011) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112:1–14

    Article  PubMed  Google Scholar 

  • Zang GQ, Dong XF, Wang ZH, Zhang Q, Wang HX Tong JM (2010) Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. BioresourceTechnol 101:4125–4131

    Article  Google Scholar 

  • Zeng YF, Ko TP, Lai HL, Cheng YS, Wu TH, Ma Y, Chen CC, Yang CS, Cheng KJ, Huang CS, Guo RT, Liu JR (2011) Crystal structure of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. J Mol Biol 409:214–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lei XG (2008) Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl Microbiol Biotechnol 77:1033–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratefulness to members of the Laboratory for Biocrystallography and Structural Biology of Therapeutical Targets (CNRS/Lyon) for their generous help and support. We thank Dr Michel JUY for his kind advices and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Rhimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgi, M.A., Boudebbouze, S., Aghajari, N. et al. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl Microbiol Biotechnol 98, 5937–5947 (2014). https://doi.org/10.1007/s00253-013-5421-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5421-9

Keywords

Navigation