Skip to main content
Log in

An l-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an l-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with d-glucitol oxidation to d-fructose but also converted l-glucitol to d-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for l-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a d-sorbitol dehydrogenase (EC 1.1.1.14).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek SH, Park SJ, Lee HG (2010) d-psicose, a sweet monosaccharide, ameliorate hyperglycemia, and dyslipidemia in C57BL/6 J db/db mice. J Food Sci 75:H49–H53

    Article  PubMed  CAS  Google Scholar 

  • Beerens K, Desmet T, Soetaert W (2012) Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol 39:823–834

    Article  PubMed  CAS  Google Scholar 

  • Bon Saint Côme Y, Lalo H, Wang Z, Kohring GW, Hempelmann R, Etienne M, Walcarius A, Kuhn A (2013) Interest of the sol–gel approach for multiscale tailoring of porous bioelectrode surfaces. Electroanalysis 25:621–629

    Article  CAS  Google Scholar 

  • Brechtel E, Huwig A, Giffhorn F (2002) l-glucitol catabolism in Stenotrophomonas maltophilia Ac. Appl Environ Microbiol 68:582–587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chenault HK, Whitesides GM (1989) Lactate dehydrogenase-catalyzed regeneration of NAD from NADH for use in enzyme-catalyzed synthesis. Bioorg Chem 17:400–409

    Article  CAS  Google Scholar 

  • Frush HL, Isbell HS (1956) Sodium borohydride reduction of aldonic lactones to glucitol. J Am Chem Soc 78:2844–2846

    Article  CAS  Google Scholar 

  • Gajdizik J, Szamocki R, Natter H, Kohring GW, Giffhorn F, Hempelmann R (2007) Electroenzymatic reactions with sorbitol dehydrogenase on gold electrodes. J Solid State Electrochem 11:144–149

    Article  CAS  Google Scholar 

  • Granstrom TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97:89–94

    PubMed  Google Scholar 

  • Gumina G, Song GY, Chu CK (2001) l-nucleosides as chemotherapeutic agents. FEMS Microbiol Lett 202:9–15

    PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  • Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22:63–88

    Article  CAS  Google Scholar 

  • Hollmann F, Arends IWCE, Buehler K (2010) Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem 2:762–782

    Article  CAS  Google Scholar 

  • Huwig A, Emmel S, Giffhorn F (1996) Preparation of d-sorbose from l-glucitol by bioconversion with Pseudomonas sp Ac. Carbohydr Res 281:183–186

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kornberger P, Gajdzik J, Natter H, Wenz G, Giffhorn F, Kohring GW, Hempelmann R (2009) Modification of galactitol dehydrogenase from Rhodobacter sphaeroides D for immobilization on polycrystalline gold surfaces. Langmuir 25:12380–12386

    Article  PubMed  CAS  Google Scholar 

  • Kornberger P, Giffhorn F, Kohring GW (2010) Dehydrogenases, electrochemical co-factor regeneration. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1888–1898

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lim YR, Oh DK (2011) Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 91:229–235

    Article  PubMed  CAS  Google Scholar 

  • Lindstad RI, Köll P, McKinley-McNee JS (1998) Substrate specificity of sheep liver sorbitol dehydrogenase. Biochem J 330:479–487

    PubMed Central  PubMed  CAS  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Levin GV, Donner TW (2008) Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes Metab 10:109–134

    Article  PubMed  CAS  Google Scholar 

  • Mayerskuntzer H, Reichert A, Schneider KH, Giffhorn F (1994) Isolation and characterization of a l-glucitol dehydrogenase from the newly isolated bacterium Pseudomonas sp Ac. J Biotechnol 36:157–164

    Article  Google Scholar 

  • Monedero V, Perez-Martinez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Philippsen A, Schirmer T, Stein MA, Giffhorn F, Stetefeld J (2005) Structure of zinc-independent sorbitol dehydrogenase from Rhodobacter sphaeroides at 2.4 Angstrom resolution. Acta Crystallogr D 61:374–379

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT (2012) Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68:7530–7548

    Article  CAS  Google Scholar 

  • Schauder S, Schneider KH, Giffhorn F (1995) Polyol metabolism of Rhodobacter sphaeroides: biochemical characterization of a short-chain sorbitol dehydrogenase. Microbiology 141:1857–1863

    Article  PubMed  CAS  Google Scholar 

  • Schneider KH, Giffhorn F (1991) Sorbitol dehydrogenase from Pseudomonas sp: purification, characterization and application to quantitative-determination of sorbitol. Enzym Microb Technol 13:332–337

    Article  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Steckhan E (1994) Electroenzymatic synthesis. Top Curr Chem 170:83–111

    Article  CAS  Google Scholar 

  • van Loveren C (2004) Sugar alcohols: what is the evidence for caries preventive and caries-therapeutic effects? Caries Res 38:286–293

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Etienne M, Kohring GW, Walcarius A (2010) Critical effect of polyelectrolytes on the electrochemical response of dehydrogenases entrapped in sol–gel thin films. Electroanalysis 22:2092–2100

    Article  CAS  Google Scholar 

  • Wang Z, Etienne M, Kohring GW, Bon-Saint-Come Y, Kuhn A, Walcarius A (2011) Electrochemically assisted deposition of sol–gel bio-composite with co-immobilized dehydrogenase and diaphorase. Electrochim Acta 56:9032–9040

    Article  CAS  Google Scholar 

  • Wang Z, Etienne M, Quiles F, Kohring GW, Walcarius A (2012) Durable cofactor immobilization in sol–gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases. Biosens Bioelectron 32:111–117

    Article  PubMed  CAS  Google Scholar 

  • Wichmann D, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225–260

    PubMed  CAS  Google Scholar 

  • Zumbé A, Lee A, Storey D (2001) Polyols in confectionery: the route to sugar-free, reduced sugar and reduced calorie confectionery. Br J Nutr 85:S31–S45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the European Community through the FP7-NMP-2007-SMALL 1 collaborative project ERUDESP is gratefully acknowledged. We thank Dr. Josef Zapp, Saarland University, for the NMR and IR determinations, and Birgit Hasper for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert-Wieland Kohring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauer, S., Wang, Z., Otten, H. et al. An l-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration. Appl Microbiol Biotechnol 98, 3023–3032 (2014). https://doi.org/10.1007/s00253-013-5180-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5180-7

Keywords

Navigation