Skip to main content
Log in

In vivo efficacy and synergistic interaction of 16α-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide, a clerodane diterpene from Polyalthia longifolia against methicillin-resistant Staphylococcus aureus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Staphylococcus aureus bacterium, a nosocomial pathogen often causing untreatable and lethal infection in patients, mutated to become resistant to all the first-line drugs. The present study details the potential of clerodane diterpene 16α-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide (CD) isolated from Polyalthia longifolia against methicillin-resistant S. aureus (MRSA) through in vitro and in vivo assays. Minimum inhibitory concentration (MIC) of CD exhibited significant anti-MRSA activity (15.625–31.25 mg/l) against reference strain and seven clinical isolates, while time kill assays at graded MICs indicated 2.78–9.59- and 2.9–6.18-fold reduction in growth of reference strain and clinical isolates of S. aureus, respectively. The combined effect of the CD and 7.5 % NaCl resulted in significant reduction in microbial count within 24 h, indicating the loss of the salt tolerance ability of S. aureus. Further, release of 260-nm absorbing material and flow cytometric analysis revealed an increased uptake of propidium iodide. These assays may indicate the membrane-damaging potential of CD. The molecule CD was found to interact synergistically with clinically used antibiotics (FICI ≤ 0.5) against all clinical isolates. In infected mice, CD significantly (P < 0.001) lowered the systemic microbial load in blood, liver, kidney, lung and spleen tissues and did not exhibit any significant toxicity at 100 mg/kg body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  PubMed  CAS  Google Scholar 

  • Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–20

    Article  PubMed  CAS  Google Scholar 

  • Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    Article  PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically—eight edition: approved standard M07-A8. CLSI, Wayne

    Google Scholar 

  • Dimas K, Demetzos C, Vaos V, Ioannidis P, Trangas T (2001) Labdane type diterpenes down-regulate the expression of c-Myc protein, but not of Bcl-2, in human leukemia T-cells undergoing apoptosis. Leukemia Res 25:449–454

    Article  CAS  Google Scholar 

  • De Carvalho PR, Furlan M, Young MCM, Kingston DGI, Bolzani VS (1998) Acetylated DNA-damaging clerodane diterpenes from Casearia sylvestris. Phytochem 49:1659–1662

    Article  Google Scholar 

  • DeLeo FR, Chambers HF (2009) Re-emergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474

    Article  PubMed  CAS  Google Scholar 

  • De Souza EL, de Barros JC, de Oliveira CE, da Conceicao ML (2010) Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int J Food Microbiol 137:308–11

    Article  PubMed  Google Scholar 

  • Dev S (2010) Impact of natural products in modern drug development. Indian J Exp Biol 48:191–198

    PubMed  CAS  Google Scholar 

  • García-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011) Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603

    Article  PubMed  Google Scholar 

  • Gilbert P (1984) The revival of microorganism sublethally injured by chemical inhibitors. The revival of injured microbes (Andrews MHE and Russell AD, eds), Academic, London, pp175-197

  • Gonzalez-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–19

    Article  PubMed  CAS  Google Scholar 

  • Graham JE, Wilkinson BJ (1992) Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol 174:2711–16

    PubMed  CAS  Google Scholar 

  • Gupta VK, Verma S, Gupta S, Singh A, Pal A, Srivastava SK, Srivastava PK, Singh SC, Darokar MP (2012) Membrane damaging potential of natural L(−) usnic acid in Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 31(12):3375–83

    Article  PubMed  CAS  Google Scholar 

  • Hawser SP, Bouchillon SK, Hoban DJ, Dowzicky M, Babinchak T (2011) Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. Int J Antimicrob Agents 37:219–224

    Article  PubMed  CAS  Google Scholar 

  • Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23:99–139

    Article  PubMed  CAS  Google Scholar 

  • Hu ZQ, Zhao WH, Hara Y, Shimamura T (2001) Epigallocatechin-gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 48(3):361–4

    Article  PubMed  CAS  Google Scholar 

  • Iandolo JJ, Ordal ZJ (1966) Repair of thermal injury of Staphylococcus aureus. J Bacteriol 91:134–142

    PubMed  CAS  Google Scholar 

  • Ifesan BOT, Hamtasin C, Mahabusarakam W, Voravuthikunchai SP (2009) Inhibitory effect of Eleutherine americana Merr. extract on Staphylococcus aureus isolated from food. J Food Sci 1:31–36

    Article  Google Scholar 

  • Karthikeyan S, Gobianand K, Pradeep K, Mohan CV, Balasubramanian MP (2006) Biochemical changes in serum, lung, heart and spleen tissues of mice exposed to sub-acute toxic inhalation of mosquito repellent mat vapour. J Environ Biol 27:355–58

    PubMed  CAS  Google Scholar 

  • Katkar KV, Suthar AC, Chauhan VS (2010) The chemistry, pharmacologic and therapeutic applications of Polyalthia longifolia. Pharmacogn Rev 4(7):62–68

    Article  PubMed  CAS  Google Scholar 

  • Kurek A, Nadkowska P, Pliszka S, Wolska KI (2012) Modulation of antibiotic resistance in bacterial pathogen by oleanolic acid and ursolic acid. Phytomed 19(6):515–9

    Article  CAS  Google Scholar 

  • Leonard SN, Rolek KM (2012) Evaluation of the combination of daptomycin and nafcillin against vancomycin-intermediate Staphylococcus aureus. J Antimicrob Chemother. doi:10.1093/jac/dks453

    Google Scholar 

  • McKay GA, Beaulieu S, Arhin FF, Belley A, Sarmiento I, Parr T Jr, Moeck G (2009) Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 63:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Misra P, Sashidhara KV, Singh SP, Kumar A, Gupta R, Chaudhaery SS, Gupta SS, Majumder HK, Saxena AK, Dube A (2010) 16a-Hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. British J Pharmacol 159:1143–1150

    Article  CAS  Google Scholar 

  • Mitchell G, Lafrance M, Boulanger S, Séguin DL, Guay I, Gattuso M, Marsault E, Bouarab K, Malouin F (2012) Tomatidine acts in synergy with aminoglycoside antibiotics against multi-resistant Staphylococcus aureus and prevents virulence gene expression. J Antimicrob Chemother 67(3):559–68

    Article  PubMed  CAS  Google Scholar 

  • Novy P, Urban J, Leuner O, Vadlejch J, Kokoska L (2011) In vitro synergistic effects of baicalin with oxytetracycline and tetracycline against Staphylococcus aureus. J Antimicrob Chemother 66(6):1298–300

    Article  PubMed  CAS  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1

    Article  PubMed  CAS  Google Scholar 

  • Onawunmi GO, Ogunlana EO (1985) Effect of lemon grass oil on the cells and spheroplasts of Escherichia coli NCTC 9001. Microbiol Lett 28:63–68

    CAS  Google Scholar 

  • Oonmetta-aree J, Suzuki T, Gasaluck P, Eumkeb G (2006) Antimicrobial properties of action of galangal (Alpinia galangal Linn.) on Staphylococcus aureus. LWT 39:1214–20

    Article  CAS  Google Scholar 

  • Patel MV, De Souza NJ, Gupte SV, Jafri MA, Bhagwat SS, Chugh Y, Khorakiwala HF, Jacobs MR, Appelbaum PC (2004) Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob Agents Chemother 48(12):4754–61

    Article  PubMed  CAS  Google Scholar 

  • Raja AF, Ali F, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC (2011) Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-b-boswellic acid from Boswellia serrata. BMC Microbiol 11:54

    Article  PubMed  CAS  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:161–71

    Article  PubMed  CAS  Google Scholar 

  • Sashidhara KV, Singh SP, Shukla PK (2009) Antimicrobial evaluation of clerodane diterpenes from Polyalthia longifolia var. pendula. Nat Prod Comm 4:327–330

    CAS  Google Scholar 

  • Sashidhara KV, Singh SP, Sarkar J, Sinha S (2010) Cytotoxic clerodane diterpenoids from the leaves of Polyalthia longifolia. Nat Prod Res 24:1687–94

    Article  PubMed  CAS  Google Scholar 

  • Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T (2005) Mechanism of action of corilagin and tellimagrandin I that remarkably potentiate the activity of β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48:67–73

    Google Scholar 

  • Tanna A, Nair R, Chanda S (2009) Assessment of anti-inflammatory and hepatoprotective potency of Polyalthia longifolia var. pendula leaf in Wistar albino rats. J Nat Med 63:80–85

    Article  PubMed  CAS  Google Scholar 

  • Tsai M, Ohniwa RL, Kato Y, Takeshita SL, Ohta T, Saito S, Hayashi H, Morikawa K (2011) Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity. BMC Microbiol 11:13

    Article  PubMed  CAS  Google Scholar 

  • Vaudaux P, Huggler E, Bernard L, Ferry T, Renzoni A, Lew DP (2010) Underestimation of vancomycin and teicoplanin MICs by broth microdilution leads to under detection of glycopeptide-intermediate isolates of Staphylococcus aureus. Antimicrob Agents Chemother 54:3861–3870

    Article  PubMed  CAS  Google Scholar 

  • White AR (2011) Effective antibacterials: at what cost? The economics of antibacterial resistance and its control. J Antimicrobial Chemother 66:1948–53

    Article  CAS  Google Scholar 

  • Zu YG, Liu XL, Fu YJ, Wu N, Kong Y, Wink M (2010) Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomed 17:1095–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director of CSIR-CIMAP for the R&D facilities. We are grateful to Prof. K. N. Prasad, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India for providing the clinical isolates of methicillin-resistant S. aureus. The help from Dr. S. C. Singh, Taxonomy and Pharmacognosy Department, CSIR-CIMAP, Lucknow, India in identifying the plant is gratefully acknowledged. This work was part of in-house project MLP-14 of CSIR-CIMAP, Lucknow, India.

Transparency declarations

None to declare

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra P. Darokar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V.K., Verma, S., Pal, A. et al. In vivo efficacy and synergistic interaction of 16α-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide, a clerodane diterpene from Polyalthia longifolia against methicillin-resistant Staphylococcus aureus . Appl Microbiol Biotechnol 97, 9121–9131 (2013). https://doi.org/10.1007/s00253-013-5154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5154-9

Keywords

Navigation