Skip to main content

Advertisement

Log in

Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the effects of osmotic downshift induced by the transfer of Nannochloropsis oceanica CCALA 804 from artificial seawater medium (27 g L−1 NaCl) to the same medium without NaCl or freshwater modified BG-11 medium (mBG-11) as a function of photosynthetically active radiation (170, 350, or 700 μmol photon m–2 s–1). Alterations in growth, total fatty acid (FA) content and FA composition of individual lipid classes, and in relative contents of metabolites relevant to osmotic adjustments were studied. Cells displayed remarkable tolerance to the osmotic downshift apart from some swelling, with no substantial lag or decline in cell division rate. Biomass accumulation and chlorophyll a content were enhanced upon downshifting, especially under the highest irradiance. The highest chlorophyll a and eicosapentaenoic acid (EPA) biomass and culture contents were determined in the cultures grown in mBG-11. Two days after transfer to 0 g L-1 NaCl, the proportion in total acyl lipids of the major chloroplast galactolipid monogalactosyldiacylglycerol, a major depot of EPA, increased twofold, along with a modest change in the proportion of digalactosyldiacylglycerol (DGDG). EPA percentage decreased in DGDG and increased in the extraplastidial lipid phosphatidylethanolamine. Metabolite profiling by GC–MS analysis revealed a sharp decrease in metabolites potentially involved in osmoregulation, such as mannitol and proline, while proline-cycle intermediates and some free sugars increased. The stress-induced polyamine spermidine decreased ca. one order of magnitude, while its catabolic product—the non-protein amino acid γ-amino butyric acid—increased twofold, as did the stress-related sugars trehalose and talose. Biochemical mechanisms governing osmotic plasticity and implications for optimization of EPA production by N. oceanica CCALA 804 under variable cultivation conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad I, Hellebust JA (1984) Nitrogen metabolism of the marine microalga Chlorella autotrophica. Plant Physiol 76:658–663

    Article  PubMed  CAS  Google Scholar 

  • Ahmad I, Hellebust JA (1986) The role of glycerol and inorganic ions in osmoregulatory responses of the euryhaline flagellate Chlamydomonas pulsatilla Wollenweber. Plant Physiol 82:406–410

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Andersen RA, Brett RW, Potter D (1998) Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis. Protist 149:61–74

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H (2008) The galactolipid monogalactosyldiacylglycerol (MGDG) contributes to photosynthesis-related processes in Arabidopsis thaliana. Plant Signal Behav 3:1093–1095

    Article  PubMed  Google Scholar 

  • Bai B, Sikron N, Gendler T, Kazachkova Y, Barak S, Grafi G, Khozin-Goldberg I, Fait A (2012) Ecotypic variability in the metabolic response of seeds to diurnal hydration–dehydration cycles and its relationship to seed vigor. Plant Cell Physiol 53:38–52

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    Article  CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47

    Article  CAS  Google Scholar 

  • Brown LM (1982) Photosynthetic and growth responses to salinity in a marine isolate of Nannochloris bacillaris (Chlorophyceae). J Phycol 18:483–488

    Article  Google Scholar 

  • Brown LM, Hellebust JA (1980) The contribution of organic solutes to osmotic balance in some green and eustigmatophyte algae. J Phycol 16:265–270

    Article  CAS  Google Scholar 

  • Busch KB, Fromm H (1999) Plant succinic semialdehyde dehydrogenase. Cloning, purification, pocalization in mitochondria, and regulation by adenine nucleotides. Plant Physiol 121:589–598

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi V, Bartiss A, Wong B (1997) Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J Bacteriol 179:157–162

    PubMed  CAS  Google Scholar 

  • Chen G-Q, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44:1309–1314

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377

    PubMed  CAS  Google Scholar 

  • Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    Article  PubMed  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  PubMed  CAS  Google Scholar 

  • Fawley KP, Fawley MW (2007) Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist 158:325–336

    Article  PubMed  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2012) Trehalose and plant stress responses: friend or foe? Cell Mol Life Sci 69:3225–3243

    Article  Google Scholar 

  • Fietz S, Bleiß W, Hepperle D, Koppitz H, Krienitz L, Nicklisch A (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from lake Baikal. J Phycol 41:780–790

    Article  Google Scholar 

  • Fisher T, Berner T, Iluz D, Dubinsky Z (1998) The kinetics of the photoacclimation response of Nannochloropsis sp. (Eustigmatophyceae): a study of changes in ultrastructure and PSU density. J Phycol 34:818–824

    Article  Google Scholar 

  • Garza–Sánchez F, Chapman DJ, Cooper JB (2009) Nitzschia ovalis (Bacillariophyceae) mono lake strain accumulates 1,4/2,5 cyclohexanetetrol in response to increased salinity. J Phycol 45:395–403

    Article  Google Scholar 

  • Ginzburg M, Ratcliffe R, Southon T (1988) Phosphorus metabolism and intracellular pH in the halotolerant alga Dunaliella parva studied by 31P-NMR. Biochim Biophys Acta–Mol Cell Res 969:225–235

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett M, Arts M (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14

    Article  PubMed  CAS  Google Scholar 

  • Harwood J (1998) Membrane lipids in algae. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Netherlands, pp. 53–64.

  • Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766

    Article  Google Scholar 

  • Hibberd D (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119

    Article  Google Scholar 

  • Huflejt ME, Tremolieres A, Pineau B, Lang JK, Hatheway J, Packer L (1990) Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol 94:1512–1521

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (2002) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Jinkerson R, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43. doi:10.4161/bioe.21880

    Article  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg I, Didi-Cohen S, Shayakhmetova I, Cohen Z (2002) Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J Phycol 38:745–756

    Article  CAS  Google Scholar 

  • Kirst G (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53. doi:10.1146/annurev.pp. 41.060190.000321

    Article  Google Scholar 

  • Krienitz L, Hepperle D, Stich HB, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227

    Article  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  PubMed  CAS  Google Scholar 

  • Liu CH, Shih MC, Lee TM (2000) Free proline levels in Ulva (Chlorophyta) in response to hypersalinity: elevated NaCl in seawater versus concentrated seawater. J Phycol 36:118–119

    Article  CAS  Google Scholar 

  • Lu N, Wei D, Chen F, Yang ST (2012) Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. Eur J Lipid Sci Technol 114:253–265

    Article  CAS  Google Scholar 

  • Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics 24:732–737

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  PubMed  CAS  Google Scholar 

  • Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Renaud S, Parry D (1994) Microalgae for use in tropical aquaculture. II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Renaud S, Parry D, Thinh L, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127:749–764

    Article  PubMed  CAS  Google Scholar 

  • Schneider JC, Roessler P (1994) Radiolabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginous marine alga. J Phycol 30:594–598

    Article  CAS  Google Scholar 

  • Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102:6026–6032

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol 13:527–535

    Article  PubMed  CAS  Google Scholar 

  • Stefanov K, Seizova K, Elenkov I, Kuleva L, Popov S, Dimitrova-Konaklieva S (1994) Lipid composition of the red alga Chondria tenuissima (Good et Wood.) Ag., inhabiting waters with different salinities. Bot Mar 37:445–448

    Article  CAS  Google Scholar 

  • Suda S, Atsumi M, Miyashita H (2002) Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41:273–279

    Article  Google Scholar 

  • Sukenik A (1999) Production of EPA by Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 41–56

    Google Scholar 

  • Sukenik A, Beardall J, Kromkamp JC, Kopeck J, Masojídek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308

    Article  Google Scholar 

  • Sukenik A, Yamaguchi Y, Livne A (1993a) Alterations in lipid molecular species of the marine eustigmatophyte Nannochlorosis sp. J Phycol 29:620–626

    Article  CAS  Google Scholar 

  • Sukenik A, Zamora O, Carmeli Y (1993b) Biochemical quality of marine unicellular algae with emphasis on lipid composition. II. Nannochlorosis sp. Aquaculture 117:313–326

    Article  CAS  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, Terbush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis sp.CCMP1779. PLoS Genet 8:e1003064. doi: 10.1371/journal.pgen.1003064

  • Zhifang G, Loescher W (2003) Expression of a celery mannose 6–phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl–mannitol dimer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

  • Zou N, Zhang C, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the European Commission's Seventh Framework Program for Research and Technology Development (FP7), project GIAVAP, Grant No. 266401. DP and AB acknowledge support from the Albert Katz International School for Desert Studies at BGU. AS acknowledges partial financial support from the Ministry of Science and Education of the Russian Federation (contract no. 14.515.11.0026), Russian Foundation of Basic Research, and “Skolkovo” Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, D., Khozin-Goldberg, I., Didi-Cohen, S. et al. Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Appl Microbiol Biotechnol 97, 8291–8306 (2013). https://doi.org/10.1007/s00253-013-5092-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5092-6

Keywords

Navigation