Skip to main content

Advertisement

Log in

Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant–plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria—as they are dominant among other microbes and are being used for enhancing crop production for decades—and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal AR, Gahlot A, Verma R, Rao PB (2002) Effects of weed extracts on seedling growth of same varieties of wheat. J Environ Biol 23:19–23

    CAS  Google Scholar 

  • Amsellem Z, Cohen B, Gressel J (2002) Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nature Biotech 20:1035–1039

    Article  CAS  Google Scholar 

  • Anaya AL (1999) Allelopathy as a tool in the management of biotic resources. Crit Rev Plant Sci 18:697–739

    Article  CAS  Google Scholar 

  • Auld BA, Morin L (1995) Constraints in the development of bioherbicides. Weed Technol 9:638–652

    Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Barto EK, Friese CF, Cipollini D (2010) Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J Chem Ecol 36:351–360

    Article  CAS  Google Scholar 

  • Bell DT, Koeppe DE (1972) Noncompetitive effects of giant foxtail on the growth of corn. Agron J 64:321–325

    Article  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63:308–326

    Article  CAS  Google Scholar 

  • Bhinu VS, Narasimhan K, Swarup S (2006) Plant natural products in the rhizosphere. In: Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann H (eds) Natural products from plants. CRC, Boca Raton, pp 143–164

    Chapter  Google Scholar 

  • Bhowmik PC, Doll JD (1983) Growth analysis of corn and soybeans response to allelopathic soybeans response to allelopathic effects of weeds residues at various temperatures and photosynthetic flux densities. J Chem Ecol 9:1263–1280

    Google Scholar 

  • Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  • Blanco FA, Zanetti ME, Casalongué CA, Daleo GR (2006) Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem 44:315–322

    Article  CAS  Google Scholar 

  • Blum U (1998) Effect of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    Article  CAS  Google Scholar 

  • Boyetchko S (1999) Innovative applications of microbial agents for biological weed control. In: Mukerji KJ et al (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum, New York, pp 73–97

    Chapter  Google Scholar 

  • Branda SS, Vik S, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  • Cao Y, Wu Y, Zheng Z, Song F (2006) Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol 67:202–211

    Article  CAS  Google Scholar 

  • Chase WR, Nair MG, Putnam AR, Mishra SK (1991) 2,2-oxo-1,10-Azobenzene: microbial transformation of rye (Secale cereale L.) allelochemical in field soils by Acinetobacter calcoaceticus: III. J Chem Ecol 17:1575–1584

    Article  CAS  Google Scholar 

  • Chen Y, Peng Y, Dai CC, Ju Q (2011) Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl Soil Ecol 51:102–110

    Article  Google Scholar 

  • Cheng HH (1995) Characterization of the mechanisms of allelopathy: modeling and experimental approaches. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington, pp 132–141

    Google Scholar 

  • Choesin DN, Boerner REJ (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am J Bot 78:1083–1090

    Article  CAS  Google Scholar 

  • Chon SU, Jennings JA, Nelson CJ (2006) Alfalfa (Medicago sativa L.) autotoxicity: current status. Allelopathy J 18:57–80

    Google Scholar 

  • Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil- Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Dash SS, Sailaja NS, Gummadi SN (2008) Chemotaxis of Pseudomonas sp. to caffeine and related methylxanthines. J Basic Microbiol 48:130–134

    Article  Google Scholar 

  • de Weert S, Vermeiren H, Mulders I, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, Mot RD, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  Google Scholar 

  • Duressa D, Soliman K, Chen D (2010) Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. Int J Plant Genomics 2010:13

    Article  CAS  Google Scholar 

  • Džafić E, Pongrac P, Likar M, Vogel-Mikuš K, Regvar M (2010) Colonization of maize (Zea mays L.) with the arbuscular mycorrhizal fungus Glomus mosseae alleviates negative effects of Festuca pratensis and Zea mays root extracts. Allelopath J 25:249–258

    Google Scholar 

  • Ehlers BK (2011) Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species. PLoS ONE 6:e26321

    Article  CAS  Google Scholar 

  • Elmore CD (1985) Assessment of the allelopathic effects of weeds on field crops in the humid midsouth. In: Thompson AC (ed) The chemistry of allelopathy. American Chemical Society, Washington, pp 21–32

    Chapter  Google Scholar 

  • Evans HC (1997) Parthenium hysterophorus: a review of its weed status and the possibilities for biological control. Biocont News Inform 18:389–398

    Google Scholar 

  • Fomsgaard IS, Mortensen AG, Carlsen SCK (2004) Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals—a review. Chemosphere 54:1025–1038

    Article  CAS  Google Scholar 

  • Gagliardo RW, Chilton WS (1992) Soil transformation of 2(3H)-benzoxazolinone of rye into phytotoxic 2-amino-3Hphenoxazin-3-one. J Chem Ecol 18:1683–1691

    Article  CAS  Google Scholar 

  • Gallandt ER, Liebman M, Huggins DR (1999) Improving soil quality: implications for weed management. J Crop Product 2:95–121

    Article  Google Scholar 

  • Gand E, Hanson JR, Nasir H (1995) The biotransformation of 8-epicedrol and some relatives by Cephalosporium aphicola. Phytochemistry 39:1081–1084

    Article  CAS  Google Scholar 

  • Gealy DR, Gurusiddaiah S, Ogg AG Jr (1996) Isolation and characterization of metabolites from Pseudomonas syringae strain 3366 and their phytotoxicity against certain weed and crop species. Weed Sci 44:383–392

    CAS  Google Scholar 

  • Grant WD (1976) Microbial degradation of condensed tannins. Science 193:1137–1138

    Article  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  Google Scholar 

  • Hattori S, Noguchi I (1959) Microbial degradation of rutin. Nature 184:1145–1146

    Article  CAS  Google Scholar 

  • Holowczak J, Kuc J, Williams EG (1960) Metabolism in vitro of phloridzin and other host compounds by Venturia inaequalis. Phytopathology 50:640

    Google Scholar 

  • Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  • Inderjit (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1995) Quercetin and quercitrin from Pluchea lanceolata and their effects on growth of asparagus bean. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington, pp 86–95

    Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, De'fago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Google Scholar 

  • Knop M, Pacyna S, Voloshchuk N, Kant S, Müllenborn C, Steiner U, Kirchmair M, Wcherer HW, Schulz M (2007) Zea mays: benzoxazolinone detoxification under sulfur deficiency conditions—a complex allelopathic alliance including endophytic Fusarium verticillioides. J Chem Ecol 33:225–237

    Article  CAS  Google Scholar 

  • Kohli RK, Batish DR (1994) Exhibition of allelopathy by Parthenium hysterophorus in agroecosystems. Trop Ecol 35:295–307

    Google Scholar 

  • Kremer RJ (2006) The role of allelopathic bacteria in weed management. In: Inderjit, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer. New York, vol 2:143–155

    Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    Article  CAS  Google Scholar 

  • Kruse M, Strandberg M, Strandberg B (2000) Ecological effects of allelopathic plants. A review, Department of Terrestrial Ecology, Silkeborg, Denmark, Rep. No. 315

  • Kumar P, Gagliardo RW, Chilton WS (1993) Soil transformation of wheat and corn metabolites MBOA and DIM2BOA into aminophenoxazinoes. J Chem Ecol 19:2453–2561

    Article  CAS  Google Scholar 

  • Kunc F (1971) Decomposition of vanillin by soil microorganisms. Folia Mcrobiol 16:41–50

    Article  CAS  Google Scholar 

  • Lewis JA, Starkey RL (1968) Vegetable tannins, their decomposition and effects on decomposition of some organic compounds. Soil Sci 106:241–247

    Article  CAS  Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241

    Google Scholar 

  • Li XZ, Webb JS, Kjelleberg S, Rosche B (2006) Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine chemical production. Appl Environ Microbiol 72:1639–1644

    Article  CAS  Google Scholar 

  • Liu F, Xu W, Wei Q, Zhang Z, Xing Z, Tan L, Di C, Yao D, Wang C, Tan Y, Yan H, Ling Y, Sun C, Xue Y, Su Z (2010) Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and (Indica) during oxidative stress. PLoS ONE 5:e8632

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  Google Scholar 

  • Mishra S, Nautiyal CS (2012) Reducing the allelopathic effect of Parthenium hysterophorus L. on wheat (Triticum aestivum L.) by Pseudomonas putida. Plant Growth Regul 66:155–165

    Article  CAS  Google Scholar 

  • Mishra S, Chauhan PS, Goel AK, Upadhyay RS, Nautiyal CS (2012a) Pseudomonas putida NBRIC19 provides protection to neighboring plant diversity from invasive weed Parthenium hysterophorus L. by altering soil microbial community. Acta Physiol Plant 34:2187–2195

    Article  Google Scholar 

  • Mishra S, Mishra A, Chauhan PS, Mishra SK, Kumari M, Nautiyal CS (2012b) Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 112:793–808

    Article  CAS  Google Scholar 

  • Mitchell RE (1991) Implications of toxins in the ecology and evolution of plant pathogenic microorganisms: bacteria. Cell Mol Life Sci 47:791–803

    Article  CAS  Google Scholar 

  • Molina MA, Ramos JL, Espinosa-Urgel M (2003) Plant-associated biofilms. Rev Environ Sci Biotechnol 2:99–108

    Article  Google Scholar 

  • Müller-Schärer H, Scheepens PC, Greaves MP (2000) Biological control of weeds in European crops: recent achievements and future work. Weed Res 40:83–98

    Article  Google Scholar 

  • Newman RM, Thompson DC, Richman DB (1998) Conservation strategies for the biological control of weeds. In: Barbosa P (ed) Conservation biological control. Academic, San Diego, pp 371–396

    Chapter  Google Scholar 

  • Olofsdotter M, Jensen LB, Courtois B (2002) Improving crop competitive ability using allelopathy—an example from rice. Plant Breed 121:1–9

    Article  Google Scholar 

  • Om H, Dhiman SD, Kumar S, Kumar H (2002) Allelopathic response of Phalaris minor to crop and weed plants in rice–wheat system. Crop Prot 21:699–705

    Article  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208

    Article  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  Google Scholar 

  • Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273

    Article  CAS  Google Scholar 

  • Parr JR, Papendick RI, Hornick SB, Meyer RB (1992) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Alt Agric 7:5–11

    Article  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  CAS  Google Scholar 

  • Putnam AR, Weston LA (1986) Adverse impacts of allelopathy in agricultural systems. In: Putnam AR, Tang CS (eds) The science of allelopathy. Wiley, New York, pp 43–56

    Google Scholar 

  • Rettenmaier H, Kupas U, Lingens F (1983) Degradation of juglone by Pseudomonas putida Jl. FEMS Microbiol Lett 19:193–197

    Article  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, Orlando, p 422

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant disease. Advances in applied allelopathy. University of Oklahoma Press, Norman

    Google Scholar 

  • Roche BF Jr, Roche CT (1991) Identification, introduction, distribution, ecology, and economics of Centaurea species. In: James LF, Evans JO, Ralphs MH, Child RD (eds) Noxious range weeds. Westview, Boulder, pp 274–291

    Google Scholar 

  • Saranga Y, Paterson AH, Levi A (2009) Bridging classical and molecular genetics of abiotic stress resistance in cotton. Plant Genetics and Genomics: Crops and Models 3:1–16

    Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through the production of L-tryptophan derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  • Schmidt SK (1988) Degradation of juglone by soil bacteria. J Chem Ecol 14:1561–1571

    Article  CAS  Google Scholar 

  • Schmidt SK (1990) Ecological implications of the destruction of juglone (5-hydroxy-l,4-naphthoquinone) by soil bacteria. J Chem Ecol 16:3547–3549

    Article  Google Scholar 

  • Schreiber MM, Williams JL (1967) Toxicity of root residues of weed grass species. Weeds 15:80–81

    Article  Google Scholar 

  • Seigler DS (1996) Chemistry and mechanisms of allelopathic interactions. Agron J 88:876–885

    Article  CAS  Google Scholar 

  • Souissi T, Kremer RJ, White JA (1997) Scanning and transmission electron microscopy of root colonization of leafy spurge (Euphorbia esula L.) seedlings by rhizobacteria. Phytomorphology 47:177–193

    Google Scholar 

  • Stachon WJ, Zimdahl RL (1980) Allelopathic activity of Canada thistle (Cirsium arvense) in Colorado. Weed Sci 28:83–86

    Google Scholar 

  • Steenhagen DA, Zimdahl RL (1979) Allelopathy of leafy spurge (Euphorbia esula). Weed Sci 27:1–3

    Google Scholar 

  • Sutherland JB, Crawford DL, Pometto AL III (1983) Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257

    Article  CAS  Google Scholar 

  • Tack BF, Chapman PJ, Dagley S (1972) Metabolism of gallic and syringic acids by Pseudomonas putida. J Biol Chem 247:6438–6443

    CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt stress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  Google Scholar 

  • Theophrastus (ca 300 BC) Enquiry into plants and minor works on odours and weather signs, 2 vols. Translated to English by Hort A and Heinemann W. London, 1916

  • Timsina B, Shrestha BB, Rokaya MB, Munzbergova Z (2011) Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora-Morphology, Distribution, Functional Ecology of Plants 206:233–240

    Article  Google Scholar 

  • Tranel PJ, Gealy DR, Kennedy AC (1993) Inhibition of downy brome (Bromus tectorum) root growth by a phytotoxin from Pseudomonas fluorescens strain D7. Weed Technol 7:134–139

    Google Scholar 

  • Turner JA, Rice EL (1975) Microbiological decomposition of ferulic acids in soil. J Chem Ecol 1:41–58

    Article  CAS  Google Scholar 

  • van Loon L (2007) Plant responses to plant growth promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  CAS  Google Scholar 

  • Vurro M, Zonno MC, Evidente A, Andolfi A, Montemurro P (2001) Enhancement of efficacy of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates of herbicides. Biol Cont 21:182–190

    Article  CAS  Google Scholar 

  • Watson AK, Renney AJ (1974) The biology of Canadian weeds Centaurea diffusa and C. maculosa. Canadian J Plant Sci 54:687–701

    Article  Google Scholar 

  • Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585

    Article  CAS  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial organisms into the rhizosphere. VCH, New York

    Google Scholar 

  • Westlake DWS, Talbot G, Blackley ER, Simpson FJ (1959) Microbial decomposition of rutin. Can J Microbiol 5:621–629

    Article  CAS  Google Scholar 

  • Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    Article  CAS  Google Scholar 

  • Wu Y, Liu J, Yang L, Chen H, Zhang S, Zhao H, Zhang N (2011) Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ Microbiol 13:604–615

    Article  CAS  Google Scholar 

  • Yamamoto Y (1995) Allelopathic potential of Anthoxanthum odoratum for invading Zoysia-grassland in Japan. J Chem Ecol 21:1365–1373

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Zeng RS, Mallik AU (2006) Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic compounds of Kalmia angustifolia. J Chem Ecol 32:1473–1489

    Article  CAS  Google Scholar 

  • Zhang Z-Y, Pan L-P, Li H-H (2010) Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol 108:1839–1849

    Article  CAS  Google Scholar 

  • Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35

    Article  CAS  Google Scholar 

  • Zhu X, Zhang J, Ma K (2011) Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS ONE 6:e25393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Task Force grant NWP-006 from the Council of Scientific and Industrial Research (CSIR), New Delhi, India awarded to CSN. SM thanked CSIR for awarding Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekhar Nautiyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Upadhyay, R.S. & Nautiyal, C.S. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 97, 5659–5668 (2013). https://doi.org/10.1007/s00253-013-4885-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4885-y

Keywords

Navigation