Skip to main content
Log in

Cephalosporin C acylase: dream and(/or) reality

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using d-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anandan A, Vallet C, Coyle T, Moustafa IM, Vrielink A (2010) Crystallization and preliminary diffraction analysis of an engineered cephalosporin acylase. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:808–810

    Article  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Yogota Y, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991a) Isolation of soil strains producing new cephalosporin acylases. J Ferment Bioeng 72:227–231

    Article  CAS  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Isogai T, Ono H, Ishitani Y, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991b) Cloning and nucleotide sequencing of new glutaryl 7-ACA and cephalosporin-C acylase genes from Pseudomonas strains. J Ferment Bioeng 72:232–243

    Article  CAS  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Ono H, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991c) Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J Bacteriol 173:7848–7855

    CAS  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Ono H, Ishitani Y, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1992) Comparative characterization of new glutaryl-7-ACA and cephalosporin C acylases. J Ferment Bioeng 73:185–192

    Article  CAS  Google Scholar 

  • Aretz W, Sauber K (1988) Novel d-amino acid transaminase. Ann NY Acad Sci 542:366–370

    CAS  Google Scholar 

  • Burr KW, Ramsden M, Illing G, Harrison LA, Maishman NJ, Spence DW (1999) Industrial enzymes. US Patent 5,919,648

  • Cabri W, Verga R, Cambiaghi S, Bernasconi E (1999) Environmentally friendly production of 7-ACA. Chimica e Industria 81:461–464

    CAS  Google Scholar 

  • Crawford MS (1991) One-step cephalosporin C amidase enzyme, a gene encoding the same, and expression thereof in a suitable host. EP Patent 0,405,846

  • Deshpande BS, Ambedkar SS, Shewale JG (1996) Cephalosporin C acylase and penicillin V acylase formation by Aeromonas sp. ACY 95. World J Microbiol Biotechnol 12:373–378

    Article  CAS  Google Scholar 

  • Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PC (1995) Penicillin acylase has a single-amino-acid catalytic centre. Nature 373:264–268

    Article  CAS  Google Scholar 

  • Fechtig B, Peter H, Bickel H, Vischer E (1968) Concerning the preparation of 7-amino-cephalosporanic acid. Helv Chim Acta 51:1108–1119

    Article  CAS  Google Scholar 

  • Fritz-Wolf K, Koller KP, Lange G, Liesum A, Sauber K, Schreuder H, Aretz W, Kabsch W (2002) Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Protein Sci 11:92–103

    Article  CAS  Google Scholar 

  • Gaurav K, Kundu K, Kundu S (2010) Biosynthesis of cephalosporin-C acylase enzyme: optimal media design, purification, and characterization. Artif Cells Blood Substit Immobil Biotechnol 38:277–283

    Article  CAS  Google Scholar 

  • Harris CM, Ghisla S, Pollegioni L (2001) pH and kinetic effects in d-amino acid oxidase catalysis. Evidence for a concerted mechanism in substrate dehydrogenation via hydride transfer. Eur J Biochem 268:5504–5520

    Article  CAS  Google Scholar 

  • Ishii Y, Saito Y, Fujimura T, Sasaki H, Noguchi Y, Yamada H, Niwa M, Shimomura K (1995) High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. Eur J Biochem 230:773–778

    Article  CAS  Google Scholar 

  • Kim Y, Hol WG (2001) Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Chem Biol 8:1253–1264

    Article  CAS  Google Scholar 

  • Kim Y, Yoon K, Khang Y, Turley S, Hol WG (2000) The 2.0 A crystal structure of cephalosporin acylase. Structure 8:1059–1068

    Article  CAS  Google Scholar 

  • Kim Y, Kim S, Earnest TN, Hol WG (2002) Precursor structure of cephalosporin acylase. Insights into autoproteolytic activation in a new N-terminal hydrolase family. J Biol Chem 277:2823–2829

    Article  CAS  Google Scholar 

  • Kim JK, Yang IS, Rhee S, Dauter Z, Lee YS, Park SS, Kim KH (2003) Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42:4084–4093

    Article  Google Scholar 

  • Kim JK, Yang IS, Shin HJ, Cho KJ, Ryu EK, Kim SH, Park SS, Kim KH (2006) Insight into autoproteolytic activation from the structure of cephalosporin acylase: a protein with two proteolytic chemistries. Proc Natl Acad Sci U S A 103:1732–1737

    Article  CAS  Google Scholar 

  • Koller KP, Lange G, Sauber K (2002) Mutant glutaryl amidase and uses thereof. WO Patent 02/072806

  • Lein J (1988) One-step enzymatic conversion of cephalosporin C and derivatives to 7-aminocephalosporanic acid and derivatives. EP Patent 0,283,218

  • Lein J (1989) One-step enzymatic conversion of cephalosporin C and derivatives to 7-aminocephalosporanic acid and derivatives. EP Patent 0,322,032

  • Li Y, Chen J, Jiang W, Mao X, Zhao G, Wang E (1999) In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur J Biochem 262:713–719

    Article  CAS  Google Scholar 

  • Lopez-Gallego F, Batencor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan JM (2005) One-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. Adv Synth Catal 347:1804–1810

    Article  CAS  Google Scholar 

  • Mao X, Wang W, Jiang W, Zhao GP (2004) His23beta and Glu455beta of the Pseudomonas sp. 130 glutaryl-7-amino cephalosporanic acid acylase are crucially important for efficient autoproteolysis and enzymatic catalysis. Protein J 23:197–204

    Article  CAS  Google Scholar 

  • Matsuda A, Matsuyama K, Yamamoto K, Ichikawa S, Komatsu KI (1987a) Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol 169:5815–5820

    CAS  Google Scholar 

  • Matsuda A, Toma K, Komatsu KI (1987b) Nucleotide sequences of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol 169:5821–5829

    CAS  Google Scholar 

  • Morin RB, Jackson BG, Flynn EH, Roseske RW, Andrews SL (1969) Chemistry of cephalosporin antibiotics XIV: reaction of cephalosporin C with nitrosyl chloride. J Am Chem Soc 91:1396–1400

    Article  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  Google Scholar 

  • Niwa M, Saito Y, Sasaki H, Ishii Y (1994) Cephalosporin C acylase. US Patent 5,336,613

  • Niwa M, Fujimura T, Ishii Y, Noguchi Y (1998) Cephalosporin C acylase. US Patent 5,804,429

  • Oh B, Kim M, Yoon J, Chung K, Shin Y, Lee D, Kim Y (2003) Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem Biophys Res Commun 310:19–27

    Article  CAS  Google Scholar 

  • Oh B, Kim K, Park J, Yoon J, Han D, Kim Y (2004) Modifying the substrate specificity of penicillin G acylase to cephalosporin acylase by mutating active-site residues. Biochem Biophys Res Commun 319:486–492

    Article  CAS  Google Scholar 

  • Otten LG, Sio CF, Vrielink J, Cool RH, Quax WJ (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the beta-subunit. J Biol Chem 277:42121–42127

    Article  CAS  Google Scholar 

  • Otten LG, Sio CF, van der Sloot AM, Cool RH, Quax WJ (2004) Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. ChemBioChem 5:820–825

    Article  CAS  Google Scholar 

  • Otten LG, Sio CF, Reis CR, Koch G, Cool RH, Quax WJ (2007) A highly active adipyl-cephalosporin acylase obtained via rational randomization. FEBS J 274:5600–5610

    Article  CAS  Google Scholar 

  • Pilone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Biotrans 20:145–159

    Article  CAS  Google Scholar 

  • Pilone MS, Pollegioni L (2010) In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, New York, pp 1–11

    Google Scholar 

  • Pilone MS, Buto S, Pollegioni L (1995) A process for bioconversion of cephalosporin C by Rhodotorula gracilis d-amino acid oxidase. Biotechnol Lett 17:199–204

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G (2011) New biotech applications from evolved d-amino acid oxidases. Trends Biotechnol 29:276–283

    Article  CAS  Google Scholar 

  • Pollegioni L, Lorenzi S, Rosini E, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS (2005) Evolution of an acylase active on cephalosporin C. Protein Sci 14:3064–3076

    Article  CAS  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS (2008a) Properties and applications of microbial d-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 78:1–16

    Article  CAS  Google Scholar 

  • Pollegioni L, Pilone M, Molla G, Cucchetti E, Verga R, Cabri W (2008b) Cephalosporin C acylases. US Patent 7,399,624

  • Rosini E, Monelli CS, Pollegioni L, Riva S, Monti D (2012) On the substrate preference of glutaryl acylases. J Mol Catal B: Enzym 76:52–58

    Article  CAS  Google Scholar 

  • Saito Y, Fujimura T, Ishii Y, Noguchi Y, Miura T, Niwa M, Shimomura K (1996) Oxidative modification of a cephalosporin C acylase from Pseudomonas strain N176 and site-directed mutagenesis of the gene. Appl Environ Microbiol 62:2919–2925

    CAS  Google Scholar 

  • Shin YC, Jeon JYJ, Jung KH, Park MR, Kim Y (2007) Cephalosporin C acylase mutant and method for preparing 7-ACA using same. US Patent 0,207,519

  • Sio CF, Riemens AM, van der Laan JM, Verhaert RM, Quax WJ (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem 269:4495–4504

    Article  CAS  Google Scholar 

  • Sio CF, Otten LG, Cool RH, Quax WJ (2003) Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem Biophys Res Commun 312:755–760

    Article  CAS  Google Scholar 

  • Sio CF, Otten LG, Cool RH, Quax WJ (2006) Glutaryl amidases and their uses. US Patent 0,292,665

  • Sonawane VC (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120

    Article  CAS  Google Scholar 

  • Suzuki H, Miwa C, Ishihara S, Kumagai H (2004) A single amino acid substitution converts gamma-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase). Appl Environ Microbiol 70:6324–6328

    Article  CAS  Google Scholar 

  • Tischer W, Giesecke U, Lang G, Röder A, Wedekind F (1992) Biocatalytic 7-aminocephaIosporanic acid production. Ann NY Acad Sci 672:502–509

    Article  CAS  Google Scholar 

  • Volontè F, Marinelli F, Gastaldo L, Sacchi S, Pilone MS, Pollegioni L, Molla G (2008) Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expr Purif 61:131–137

    Article  Google Scholar 

  • Volpato G, Rodrigues RC, Fernandez-Lafuente R (2010) Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. Curr Med Chem 17:3855–3873

    Article  CAS  Google Scholar 

  • Whang Y, Yu H, Song W, An M, Zhang J, Luo H, Shen Z (2012) Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng 113:36–41

    Article  Google Scholar 

  • Yamada H, Ishii Y, Noguchi Y, Miura T, Mori T, Saito Y (1996) Protein engineering of a cephalosporin C acylase. Ann NY Acad Sci 799:74–81

    Article  CAS  Google Scholar 

  • Yin J, Deng Z, Zhao G, Huang X (2011) The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis. J Biol Chem 286:24476–24486

    Article  CAS  Google Scholar 

  • Yoon JC, Choi SY (2010) Mutation cephalosporin C acylase. Korean Patent 10-2010-0056123

  • Zhu X, Luo H, Chang Y, Su H, Li Q, Yu H, Shen Z (2011) Characteristic of immobilizer cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World J Microbial Biotechnol 27:823–829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the support of Fondo di Ateneo per la Ricerca, Centro Grandi Attrezzature (Università dell’Insubria), and Consorzio Interuniversitario per le Biotecnologie. The authors are grateful to all members of their laboratory and particularly to Mirella Pilone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredano Pollegioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollegioni, L., Rosini, E. & Molla, G. Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol 97, 2341–2355 (2013). https://doi.org/10.1007/s00253-013-4741-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4741-0

Keywords

Navigation