Skip to main content
Log in

Appraising freeze-drying for storage of bacteria and their ready access in a rapid toxicity assessment assay

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Direct toxicity assessment (DTA) techniques seek to measure the impact of toxic chemicals on biological materials resident in the environment. This study features the use of freeze-dried bacterial cells in combination with a rapid DTA analyser, SciTOX. The effects of three factors—cryoprotectant type, bacterial strain, and storage temperature—were tested in order to validate the shelf life of the freeze-dried cells. Three freeze-dried Gram-negative bacterial strains, Acinetobacter calcoaceticus, Escherichia coli and Pseudomonas putida, were tested by using the bacteria in the SciTox DTA assay and recording their responses to two standard toxicants: 2,4-dicholorophenol and 3,5-dichlorophenol. Each freeze-dried strain of bacteria was prepared in two forms—either pre-treatment with polyethylene glycol (PEG) or with sucrose/Tween 80—prior to storing at either 4 or −20 °C for three different storage periods (1, 2 or 3 months). While the sucrose/Tween 80 pre-treated freeze-dried cells exhibited better cell viability, we concluded that PEG was a more suitable cryoprotectant for the bacteria used in the DTA assay because of EC50 parity with fresh cell and zero-time freeze-dried cell assays. The results showed that freeze-dried cells, with appropriate materials and conditions, can give reproducible DTA results for up to 3 months. The availability of a biocomponent that can be activated by simple rehydration makes the deployment of this technology much easier for an end user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atlas RM (2004) Handbook of microbiological media (3rd edn). CRC, Boca Raton

    Book  Google Scholar 

  • Calcott PH, MacLeod RA (1975) The survival of Escherichia coli from freeze–thaw damage: the relative importance of wall and membrane damage. Can J Microbiol 21:1960–1968

    Article  PubMed  CAS  Google Scholar 

  • Castro HP, Teixeira PM, Kirby R (1997) Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol 82(1):87–94

    Article  CAS  Google Scholar 

  • Champagne CP, Mondou F, Raymond Y, Roy D (1996) Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res Int 29(5–6):555–562

    Article  CAS  Google Scholar 

  • Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17(5):433–440

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Gu MB (2003) Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Anal Chim Acta 481(2):229–238

    Article  CAS  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (eds) (1986) Data for biochemical research. Oxford University Press, New York

    Google Scholar 

  • dos Santos LF, Defrenne L, Krebs-Brown A (2002) Comparison of three microbial assay procedures for measuring toxicity of chemical compounds: ToxAlert (R) 10, Cell Sense and Biolog MT2 microplates. Anal Chim Acta 456(1):41–54. doi:10.1016/s0003-2670(01)00907-2

    Article  Google Scholar 

  • Farre M, Pasini O, Alonso MC, Castillo M, Barcelo D (2001) Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor. Anal Chim Acta 426(2):155–165. doi:10.1016/s0003-2670(00)00826-6

    Article  CAS  Google Scholar 

  • Gaiek RL, Lange CR, Weber AS (1994) The effects of freeze-drying and storage on phenol degradation. Water Environ Res 66(5):698–706

    Article  CAS  Google Scholar 

  • Gernaey K, Verschuere L, Luyten L, Verstraete W (1997) Fast and sensitive acute toxicity detection with an enrichment nitrifying culture. Water Environ Res 69(6):1163–1169

    Article  CAS  Google Scholar 

  • Gu MB, Choi SH, Kim SW (2001) Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring. J Biotechnol 88(2):95–105

    Article  PubMed  CAS  Google Scholar 

  • Hayek DH, Tipton SR (1966) Respiratory activity and maintenance of cell suspensions of rate liver. J Cell Biol 29(3):405–409

    Article  PubMed  CAS  Google Scholar 

  • Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiol 46:205–229

    Article  CAS  Google Scholar 

  • Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Pollut Res J Can 26(3):361–431

    CAS  Google Scholar 

  • Kuleshova LL DRM, Trounson AO, Shaw JM (1999) Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiol 38(2):119–130

    Article  Google Scholar 

  • Kurtmann L, Carlsen CU, Risbo J, Skibsted LH (2009) Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiol 58(2):175–180. doi:10.1016/j.cryobiol.2008.12.001

    Article  CAS  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61(10):3592–3597

    PubMed  CAS  Google Scholar 

  • Mazur P (1970) Cryobiology: the freezing of biological systems. Sci 168(934):939–49

    Article  CAS  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiol 52(1):27–32. doi:10.1016/j.cryobiol.2005.09.002

    Article  Google Scholar 

  • Pasco N, Hay J, John R, Morris K (2005) Rapid mediated bioassays for the measurement of biochemical oxygen demand (BOD) and direct toxicity assessment (DTA). Appl Microbiol Biotechnol 2:123–149

    CAS  Google Scholar 

  • Pasco N, Goonerate R, Daniel R, Czollner A, Scott AJ (2008) Toxicity assessment of chlorophenols using a mediated microbial toxicity assay. Int J Environ Anal Chem 88(15):1063–1075. doi:10.1080/03067310802248028

    Article  CAS  Google Scholar 

  • Perry SF (ed) (1995) Cryopreservation and freeze-drying protocols. Humana, Totowa

    Google Scholar 

  • Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119(1):36–43. doi:10.1016/j.jbiotec.2005.06.002

    Article  PubMed  CAS  Google Scholar 

  • Sinskey TJ, Silverman GJ (1970) Characterization of injury incurred by Escherichia coli upon freeze-drying. J Bacteriol 101(2):429–37

    PubMed  CAS  Google Scholar 

  • Steponkus PL (1984) Role of the plasma-membrane in freezing-injury and cold-acclimation. Annu Rev Plant Physiol Plant Mol Biol 35:543–584

    Article  CAS  Google Scholar 

  • Tizzard A, Webber J, Gooneratne R, John R, Hay J, Pasco N (2004) MICREDOX: application for rapid biotoxicity assessment. Anal Chim Acta 522(2):197–205. doi:10.1016/j.aca.2004.05.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the New Zealand Foundation for Research, Science and Technology (now Ministry of Business, Innovation and Employment), contract LVLX0802. The method for measuring the amount of substrate in a microbially catalysed reaction is covered by a patent (PCT/NZ97/00158), awarded in 1998. The Keio collection strain used in this work was kindly supplied by National BioResource Project (NIG, Japan), E. coli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Pasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenfeng, S., Gooneratne, R., Glithero, N. et al. Appraising freeze-drying for storage of bacteria and their ready access in a rapid toxicity assessment assay. Appl Microbiol Biotechnol 97, 10189–10198 (2013). https://doi.org/10.1007/s00253-013-4706-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4706-3

Keywords

Navigation