Skip to main content
Log in

Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An endo-1,4-β-xylanase gene, xylcg, was cloned from Chaetomium globosum and successfully expressed in Escherichia coli. The complete gene of 675 bp was amplified, cloned into the pET 28(a) vector, and expressed. The optimal conditions for the highest activity of the purified recombinant XylCg were observed at a temperature of 40 °C and pH of 5.5. Using oat-spelt xylan, the determined K m, V max, and k cat/K m values were 0.243 mg ml−1, 4,530 U mg−1 protein, and 7,640 ml s−1 mg−1, respectively. A homology model and sequence analysis of XylCg, along with the biochemical properties, confirmed that XylCg belongs to the GH11 family. Rice straw pretreated with XylCg showed 30 % higher conversion yield than the rice straw pretreated with a commercial xylanase. Although xylanases have been characterized from fungal and bacterial sources, C. globosum XylCg is distinguished from other xylanases by its high catalytic efficiency and its effectiveness in the pretreatment of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agu RC, Amadife AE, Ude CM, Onyia A, Ogu EO, Okafor M, Ezejiofor E (1997) Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production. Waste Manag (Oxford) 17:91–96

    Article  CAS  Google Scholar 

  • Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84:19–35

    Article  PubMed  CAS  Google Scholar 

  • Berrin JG, el Ajandouz H, Georis J, Arnaut F, Juge N (2007) Substrate and product hydrolysis specificity in family 11 glycoside hydrolases: an analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases. Appl Microbiol Biotechnol 74:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Dhiman SS, Jagtap SS, Jeya M, Haw JR, Kang YC, Lee JK (2012) Immobilization of Pholiota adiposa xylanase onto SiO2 nanoparticles and its application for production of xylooligosaccharides. Biotechnol Lett 34:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Academic, Waltham, pp 396–404

    Google Scholar 

  • Ghaffar A, Khan SA, Mukhtar Z, Latif F, Rajoka MI (2009) Optimized expression of a thermostable xylanase 11 A gene from Chaetomium thermophilum NIBGE 1 in Escherichia coli. Protein Pept Lett 16:356–362

    Article  PubMed  CAS  Google Scholar 

  • Guarro J, Soler L, Rinaldi MG (1995) Pathogenicity and antifungal susceptibility of Chaetomium species. Eur J Clin Microbiol Infect Dis 14:613–618

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696

    PubMed  Google Scholar 

  • Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7:337–342

    Article  PubMed  CAS  Google Scholar 

  • Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C (2009) Expression of a Trichoderma reesei β-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein Expr Purif 67:1–6

    Article  PubMed  Google Scholar 

  • Krisana A, Rutchadaporn S, Jarupan G, Lily E, Sutipa T, Kanyawim K (2005) Endo-1,4-β-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization and gene isolation. J Biochem Mol Biol 38:17–23

    Article  PubMed  CAS  Google Scholar 

  • la Grange DC, Pretorius IS, van Zyl WH (1996) Expression of a Trichoderma reesei β-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee SF, Forsberg CW, Rattray JB (1987) Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 53:644–650

    PubMed  CAS  Google Scholar 

  • Liu MQ, Weng XY, Sun JY (2006) Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr Purif 48:292–299

    Article  PubMed  CAS  Google Scholar 

  • Liu SC (2004) Analysis and measurement in papermaking industry. Chemical Industry Press, Beijing, pp 19–27

    Google Scholar 

  • Muilu J, Törrönen A, Peräkylä M, Rouvinen J (1998) Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins 31:434–444

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Pai CK, Wu ZY, Chen MJ, Zeng YF, Chen JW, Duan CH, Li ML, Liu JR (2010) Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl Microbiol Biotechnol 85:1451–1462

    Article  PubMed  CAS  Google Scholar 

  • Pauly TA, Ekstrom JL, Beebe DA, Chrunyk B, Cunningham D, Griffor M, Kamath A, Lee SE, Madura R, McGuire D, Subashi T, Wasilko D, Watts P, Mylari BL, Oates PJ, Adams PD, Rath VL (2003) X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Structure 11:1071–1085

    Article  PubMed  CAS  Google Scholar 

  • Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A (2004) The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. J Biol Chem 279:36029–36037

    Article  PubMed  CAS  Google Scholar 

  • Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM (2009) Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins 77:395–403

    Article  PubMed  CAS  Google Scholar 

  • Rogalski J, Oleszek M, Tokarzewska-Zadora J (2001) Purification and characterization of two endo-1,4-β-xylanases and a 3-xylosidase from Phlebia radiata. Acta Microbiol Pol 50:117–128

    PubMed  CAS  Google Scholar 

  • Sa-Pereira P, Paveia H, Costa-Ferreira M, Aires-Barros M (2003) A new look at xylanases: an overview of purification strategies. Mol Biotechnol 24:257–281

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  PubMed  CAS  Google Scholar 

  • Sewalt V, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Shrivastava S, Deepalakshmi PD, Shukla P, Mukhopadhyay K (2010) Thermomyces lanuginosus SS-8 endo-β-1,4-d-xylanase precursor. UniProtKB. Available from http://www.uniprot.org/uniprot/O43097

  • Singh RK, Zhang YW, Nguyen NP, Jeya M, Lee JK (2011) Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol 89:337–344

    Article  PubMed  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  PubMed  CAS  Google Scholar 

  • Vieira DS, Degreve L, Ward RJ (2009) Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation. Biochim Biophys Acta 1790:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Akiba T, Kanai R, Harata K (2006) Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. Acta Crystallogr D Biol Crystallogr 62:784–792

    Article  PubMed  Google Scholar 

  • Zhang GM, Huang J, Huang GR, Ma LX, Zhang XE (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl Microbiol Biotechnol 74:339–346

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Jiang Z, Yang S, Hua C, Li L (2010) Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour Technol 101:688–695

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Bai J, Deng S, Wang J, Zhu J, Wu M, Wang W (2008) Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour Technol 99:831–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Converging Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-50210). This subject was supported by Korea Ministry of Environment as GAIA Project (G112-00055-0023-0). This work was also supported by 2012 KU Brain Pool fellowship of Konkuk University

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyadharshini Ramachandran or Jung-Kul Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 873 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Tiwari, M.K., Kim, D. et al. Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass. Appl Microbiol Biotechnol 97, 7205–7214 (2013). https://doi.org/10.1007/s00253-012-4577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4577-z

Keywords

Navigation