Skip to main content

Advertisement

Log in

The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The membraneless bioelectrochemical reactor (Ml-BER) is useful for dark hydrogen fermentation. The effect of the electrochemical reaction on microorganisms in the Ml-BER was investigated using glucose as the substrate and compared with organisms in a membraneless non-bioelectrochemical reactor (Ml-NBER) and bioelectrochemical reactor (BER) with a proton exchange membrane. The potentials on the working electrode of the Ml-BER and BER with membrane were regulated to −0.9 V (versus Ag/AgCl) to avoid water electrolysis with a carbon electrode. The Ml-BER showed suppressed methane production (19.8 ± 9.1 mg-C·L−1·day−1) and increased hydrogen production (12.6 ± 3.1 mg-H·L−1·day−1) at pHout 6.2 ± 0.1, and the major intermediate was butyrate (24.9 ± 2.4 mM), suggesting efficient hydrogen fermentation. In contrast, the Ml-NBER showed high methane production (239.3 ± 17.9 mg-C·L−1·day−1) and low hydrogen production (0.2 ± 0.0 mg-H·L−1·day−1) at pHout 6.3 ± 0.1. In the cathodic chamber of the BER with membrane, methane production was high (276.3 ± 20.4 mg-C·L−1·day−1) (pHout, 7.2 ± 0.1). In the anodic chamber of the BER with membrane (anode-BER), gas production was low because of high lactate production (43.6 ± 1.7 mM) at pHout 5.0 ± 0.1. Methanogenic archaea were not detected in the Ml-BER and anode-BER. However, Methanosarcina sp. and Methanobacterium sp. were found in Ml-NBER. Prokaryotic copy numbers in the Ml-BER and Ml-NBER were similar, as were the bacterial community structures. Thus, the electrochemical reaction in the Ml-BER affected hydrogenotrophic and acetoclastic methanogens, but not the bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu AA, Karakashev D, Angelidaki I, Sousa DZ, Alves MM (2012) Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnol Biofuels 5:6

    Article  PubMed  CAS  Google Scholar 

  • Ben Hania W, Godbane R, Postec A, Hamdi M, Ollivier B, Fardeau ML (2012) Isolation and characterization of Defluviitoga tunisiensis gen. nov, sp. nov., a novel thermophilic bacterium pertaining to the order Thermotogales, isolated from a mesothermic anaerobic reactor treating cheese whey in Tunisia. Int J Syst Evol Microbiol 62(Pt 6):1377–1382. doi:10.1099/ijs.0.033720-0

    Article  PubMed  CAS  Google Scholar 

  • Bryant MP, Boone DR (1987) Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37:171

    Article  Google Scholar 

  • Cardinali-Rezende J, Debarry RB, Colturato LFDB, Carneiro EV, Chartone-Souza E, Nascimento AMA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789

    Article  PubMed  CAS  Google Scholar 

  • Chong ML, Rahman NAA, Yee PL, Aziz SA, Rahim RA, Shirai Y, Hassan MA (2009) Effect of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6. Int J Hydrog Energy 34:8859–8865

    Article  CAS  Google Scholar 

  • Cirne DG, Bond P, Pratt S, Lant P, Batstone DJ (2012) Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge. Water Sci Technol 65:7–14

    PubMed  CAS  Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  PubMed  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Kerrer J (2008) Syntrophic processed drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42:7937–7943

    Article  PubMed  CAS  Google Scholar 

  • Harold FM, Levin E (1974) Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis. J Bacteriol 117:1141–1148

    PubMed  CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184

    Article  CAS  Google Scholar 

  • Hoover SR, Porges N (1952) Assimilation of dairy wastes by activated sludge. II. The equation of synthesis and oxygen utilization. Sewage Ind Wastes 24:306–312

    CAS  Google Scholar 

  • Jung S, Regan JM (2011) Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl Environ Microbiol 77:564–571

    Article  PubMed  CAS  Google Scholar 

  • Jungermann K, Thauer RK, Leimenstoll G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta 305:268–280

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lee HS, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  PubMed  CAS  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Lueders T, Friedrich MW (2002) Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol 68:2484–2494

    Article  PubMed  CAS  Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Karakashev D, Xie L, Zhou Q, Angeridaki I (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827

    Article  PubMed  CAS  Google Scholar 

  • Nanqi R, Wanqian G, Bingfeng L, Guangli C, Jie D (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370

    Article  Google Scholar 

  • Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72:3228–3235

    Article  PubMed  CAS  Google Scholar 

  • Rouvière P, Mandelco L, Winker S, Woese CR (1992) A detailed phylogeny for the Methanomicrobiales. Syst Appl Microbiol 15:363–371

    Article  PubMed  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Morita M, Hirano S, Ohmura N, Igarashi Y (2009) Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry. J Biosci Bioeng 108:130–135

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Sasaki D, Morita M, Hirano S, Matsumoto N, Ohmura N, Igarashi Y (2010) Bioelectrochemical system stabilizes methane fermentation from garbage slurry. Bioresour Technol 101:3415–3422

    Article  PubMed  CAS  Google Scholar 

  • Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Morita M, Matsumoto N, Sasaki D, Hirano S, Ohmura N, Igarashi Y (2012a) Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system. J Biosci Bioeng 114:64–69

    Article  CAS  Google Scholar 

  • Sasaki K, Morita M, Sasaki D, Matsumoto N, Ohmura N, Igarashi Y (2012b) Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem Eng J 68:104–108

    Article  CAS  Google Scholar 

  • Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresour Technol 97:69–76

    Article  PubMed  CAS  Google Scholar 

  • Soh ALA, Ralambotiana H, Olliver B, Prensier G, Tina E, Garcia JL (1991) Clostridium thermopalmarium sp. nov., a moderately thermophilic butyrate-producing bacterium isolated from palm wine in Senegal. Syst Appl Microbiol 14:135–139

    Article  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  PubMed  CAS  Google Scholar 

  • Thrash JG, Coates JD (2008) Review: Direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921–3931

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Sasaki D, Fukui H, Haruta S, Ishii M, Igarashi Y (2006) Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol 101:331–343

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K (2007) Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresour Technol 98:1861–1865

    Article  PubMed  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    PubMed  CAS  Google Scholar 

  • Zinder SH, Sower KR, Ferry JG (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35:522–523

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the New Energy and Industrial Technology Development Organization (NEDO), Japan, and a Grant-in-Aid for Young Scientists (B) (24780067). We thank Yumi Kotake for her help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, K., Morita, M., Sasaki, D. et al. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea. Appl Microbiol Biotechnol 97, 7005–7013 (2013). https://doi.org/10.1007/s00253-012-4465-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4465-6

Keywords

Navigation