Skip to main content
Log in

Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many antimicrobial peptides from amphibian skin have been purified and structurally characterized and may be developed as therapeutic agents. Here we describe the antibacterial properties and membrane interaction of chensinin-1, a cationic arginine/histidine-rich antimicrobial peptide, from the skin secretions of Rana chensinensis. The amino acid composition, sequence, and atypical structure of chensinin-1 differ from other known antimicrobial peptides from amphibian skin. Chensinin-1 exhibited selective antimicrobial activity against Gram-positive bacteria, was inactive against Gram-negative bacteria, and had no hemolytic activity on human erythrocytes. The CD spectra for chensinin-1 indicated that the peptide adopted an aperiodic structure in water and a conformational structure with 20 % β-strands, 8 % α-helices, and the remaining majority of random coils in the trifluoroethanol or SDS solutions. Time-kill kinetics against Gram-positive Bacillus cereus demonstrated that chensinin-1 was rapidly bactericidal at 2× MIC and PAE was found to be >5 h. Chensinin-1 caused rapid and large dye leakage from negatively charged model vesicles. Furthermore, membrane permeation assays on intact B. cereus indicated that chensinin-1 induced membrane depolarization in less than 1 min and followed to damage the integrity of the cytoplasmic membrane and resulted in efflux of molecules from cytoplasma. Hence, the primary target of chensinin-1 action was the cytoplasmic membrane of bacteria. Chensinin-1 was unable to overcome bacterial resistance imposed by the lipopolysaccharide leaflet, the major constituent of the outer membrane of Gram-negative bacteria. Lipopolysaccharide induced oligomerization of chensinin-1, thus preventing its translocation across the outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auvynet C, Rosenstein Y (2009) Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 276:6497–6508

    Article  CAS  Google Scholar 

  • Burkhart BM, Li N, Langs DA, Pangborn WA, Duax WL (1998) The conducting form of gramicidin A is a righthanded double-stranded double helix. Proc Natl Acad Sci USA 95:2950–12955

    Article  Google Scholar 

  • Chi SW, Kim JS, Kim DH, Lee SH, Park YH, Han KH (2007) Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4. Biochem Biophys Res Commun 352:592–597

    Article  CAS  Google Scholar 

  • Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranidae frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta 1696:1–14

    Article  CAS  Google Scholar 

  • Epand RF, Schmitt MA, Gellman SH, Epand RM (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim Biophys Acta 1758:1343–1350

    Article  CAS  Google Scholar 

  • Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    Article  CAS  Google Scholar 

  • Ishibashi J, Sakanaka HS, Yang J, Sagisaka A, Yamakawa M (1999) Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros. Eur J Biochem 266:616–623

    Article  CAS  Google Scholar 

  • Jia Z (1997) Protein phosphatases: structures and implications. Biochem Cell Biol 75:7–26

    Article  Google Scholar 

  • Kan EJ, Demel RA, Bent A, Kruijff B (2003) The role of the abundant phenylalanines in the mode of action of the antimicrobial peptide clavanin. Biochim Biophys Acta 1615:84–92

    Article  Google Scholar 

  • Leptihn S, Har JY, Wohland TJ, Ding L (2010) Correlation of charge, hydrophobicity, and structure with antimicrobial activity of s1 and MIRIAM peptides. Biochemistry 49:9161–9170

    Article  CAS  Google Scholar 

  • Lequin O, Ladram A, Chabbert L, Bruston F, Conver O, Vanhoye D, Chassaing G, Nicolas P, Amiche M (2006) Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 45:468–480

    Article  CAS  Google Scholar 

  • Li L, He J, Eckert R, Yarbrough D, Lux R, Anderson M, Shi W (2010) Design and characterization of an acid-activated antimicrobial peptide. Chem Biol Drug Des 75:127–132

    Article  CAS  Google Scholar 

  • Li X, Feng W, Zhou M, Ma C, Chen T, Zeller M, Wang M, Shaw C (2011) Kasstasin: A novel potent vasoconstrictor peptide from the skin secretion of the African red-legged running frog Kassina maculata. Biochimie 93:1537–1542

    Article  CAS  Google Scholar 

  • Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra DR, Epand Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283:22907–22917

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  Google Scholar 

  • Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477

    CAS  Google Scholar 

  • Pál T, Abraham B, Sonnevend Á, Juma P, Conlon JM (2006) Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Inter J Antimicrob Agents 27:525–529

    Article  Google Scholar 

  • Panchal RG, Smart ML, Bowser DN, Williams DA, Petrou S (2002) Pore-forming proteins and their application in biotechnology. Curr Pharm Biotechnol 3:99–115

    Article  CAS  Google Scholar 

  • Papo N, Shai Y (2005) A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 280:10378–10387

    Article  CAS  Google Scholar 

  • Papo N, Oren Z, Pag U, Sahl HG, Shai Y (2002) The Consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 277:33913–33921

    Article  CAS  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87:2419–2432

    Article  CAS  Google Scholar 

  • Rasul R, Colea N, Balasubramanian D, Chen R, Kumar N, Willcox MDP (2010) Interaction of the antimicrobial peptide melimine with bacterial membranes. Inter J Antimicrob Agents 35:566–572

    Article  CAS  Google Scholar 

  • Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML (2006) A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281:28565–28574

    Article  CAS  Google Scholar 

  • Rozek A, Friedrich CL, Hancock RE (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774

    Article  CAS  Google Scholar 

  • Sahl H, Pag GU, Bonness S, Wagner S, Antcheva N, Tossi A (2005) Mammalian defensins: structures and mechanism of antibiotic activity. J Leukocyte Biol 77:466–475

    Article  CAS  Google Scholar 

  • Sansom MS (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–235

    Article  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  Google Scholar 

  • Shang DJ, Yu FH, Li JF, Zheng JJ, Zhang LF, Li Y (2009) Molecular cloning of cDNAs encoding antimicrobial peptide precursors from the skin of the Chinese brown frog, Rana chensinensis. Zool Sci 26:220–226

    Article  CAS  Google Scholar 

  • Shi J, Ross CR, Chengappa MM, Blecha F (1994) Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J Leukoc Biol 56:807–811

    CAS  Google Scholar 

  • Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R (2002) Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob Agents Chemother 46:2279–2283

    Article  CAS  Google Scholar 

  • Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92:1236–1241

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  Google Scholar 

  • Verdon J, Girardin N, Lacombe C, Berjeaud JM, Hechard Y (2009) δ-Hemolysin, an update on a membrane-interacting peptide. Peptides 30:817–823

    Article  CAS  Google Scholar 

  • Wu Y, Wang L, Zhou M, Ma C, Chen X, Bai B, Chen T, Shaw C (2011) Limnonectins: a new class of antimicrobial peptides from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). Biochimie 93:981–987

    Article  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  CAS  Google Scholar 

  • Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:317–3321

    Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (Grant No. 30970352), the Liaoning Key Laboratory Program (Grant No. 2008S131), and a Science Grant (2011E12SF031) from the Dalian Science and Technology Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejing Shang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, D., Sun, Y., Wang, C. et al. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis . Appl Microbiol Biotechnol 96, 1551–1560 (2012). https://doi.org/10.1007/s00253-012-4148-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4148-3

Keywords

Navigation