Skip to main content
Log in

Controlled synthesis of Mn2O3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mn2O3 nanowires with diameter ~70 nm were synthesized by a simple hydrothermal method using Mn(II) nitrate as precursor. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy techniques were employed to study structural features and chemical composition of the synthesized nanowires. A biological evaluation of the antimicrobial activity and cytotoxicity of Mn2O3 nanowires was carried out using Escherichia coli and mouse myoblast C2C12 cells as model organism and cell lines, respectively. The antibacterial activity and the acting mechanism of Mn2O3 nanowires were investigated by using growth inhibition studies and analyzing the morphology of the bacterial cells following the treatment with nanowires. These results suggest that the pH is critical factor affecting the morphology and production of the Mn2O3 nanowires. Method developed in the present study provided optimum production of Mn2O3 nanowires at pH ~ 9. The Mn2O3 nanowires showed significant antibacterial activity against the E. coli strain, and the lowest concentration of Mn2O3 nanowires solution inhibiting the growth of E. coli was found to be 12.5 μg/ml. TEM analysis demonstrated that the exposure of the selected microbial strains to the nanowires led to disruption of the cell membranes and leakage of the internal contents. Furthermore, the cytotoxicity results showed that the inhibition of C2C12 increases with the increase in concentration of Mn2O3 nanowires. Our results for the first time highlight the cytotoxic and bactericidal potential of Mn2O3 nanowires which can be utilized for various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajayan PM, Stephan O, Redlich Ph, Colliex C (1995) Carbon nanotube as removable templates for metal oxide nanocomposites and nanostructures. Nature 375:564–567

    Article  CAS  Google Scholar 

  • Amna T, Hassan MS, Barakat NAM, Pandeya DR, Hong ST, Khil MS, Kim HY (2011) Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microb Biotech. doi:10.1007/s00253-011-3459-0

  • Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Cao J, Zhu YC, Bao KY, Shi L, Liu SZ, Qian YT (2009) Microscale Mn2O3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties. J Phys Chem C 113:17755–17760

    Article  CAS  Google Scholar 

  • Chandra N, Bhasin S, Sharma M, Pal D (2007) A room temperature process for making Mn2O3 nano-particles and γ-MnOOH nano-rods. Mater Lett 61:3728–3732

    Article  CAS  Google Scholar 

  • Chen X, Li X, Jiang Y, Shi C, Li X (2005) Rational synthesis of α-MnO2 and γ-Mn2O3 nanowires with the electrochemical characterization of α-MnO2 nanowires for supercapacitor. Solid State Comm 136:94–95

    Article  CAS  Google Scholar 

  • Chen YC, Zhang YG, Yao QZ, Zhou GT, Fu SQ, Fan H (2007) Formation of α-Mn2O3 nanorods via a hydrothermal-assisted cleavage-decomposition mechanism. J Solid State Chem 180:1218–1223

    Article  CAS  Google Scholar 

  • Culotta VC, Sigel A, Sigel H (2000) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Culotta VC, Yang M, Hall MD (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4:1159–1165

    Article  CAS  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  • Fei J, Cui Y, Yan X, Qi W, Yang Y, Wang K, He Q, Li J (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456

    Article  Google Scholar 

  • Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267:222–225

    Article  CAS  Google Scholar 

  • Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12

    Article  CAS  Google Scholar 

  • Gui Z, Fan R, Chen XH, Wu YC (2001) A simple direct preparation of nanocrystalline Mn2O3 at ambient temperature. Inorg Chem Commun 4:294–296

    Article  CAS  Google Scholar 

  • He W, Zhang Y, Zhang X, Wang H, Yan H (2003) Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J Cryst Growth 252:285–288

    Article  CAS  Google Scholar 

  • Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039

    Article  CAS  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Webber E, Russo R, Yang P (2001) Room temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  • Imamura S, Shono M, Okamoto N, Hamada A, Ishida S (1996) Effect of cerium on the mobility of oxygen on manganese oxides. Appl Catal A 142:279–288

    Article  CAS  Google Scholar 

  • Jiao F, Harrison A, Hill AH, Bruce PG (2007) Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Adv Mater 19:4063–4066

    Article  CAS  Google Scholar 

  • Jiao F, Bao JL, Hill AH, Bruce PG (2008) Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew Chem Int Ed 47:9711–9716

    Article  CAS  Google Scholar 

  • Jun YW, Lee SM, Kang NJ, Cheon JJ (2001) Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc 123:5150–5151

    Article  CAS  Google Scholar 

  • Keen CL, Ensunsa JL, Clegg MS, Sigel A, Sigel H (2000) In metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem Phys Lett 341:1–6

    Article  CAS  Google Scholar 

  • Koyanaka H, Takeuchi K, Loong CK (2005) Gold recovery from parts-per-trillion-level aqueous solutions by a nanostructured Mn2O3 adsorbent. Sep Purif Technol 43:9–15

    Article  CAS  Google Scholar 

  • Lei SJ, Tang KB, Fang Z, Liu QC, Zheng HG (2006) Preparation of α-Mn2O3 and MnO from thermal decomposition of MnCO3 and control of morphology. Mater Lett 60:53–56

    Article  CAS  Google Scholar 

  • Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351

    Article  CAS  Google Scholar 

  • Li WN, Zhang LC, Sithambaram S, Yuan JK, Shen XF, Aindow M, Suib SL (2007) Shape evolution of single-crystalline Mn2O3 using a solvothermal approach. J Phys Chem C 111:14694–14697

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Yang YSO, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Luk E, Jensen LT, Culotta VC (2003) The many highways for intracellular trafficking of metals. J Biol Inorg Chem Soc 8:803–809

    Article  CAS  Google Scholar 

  • Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  • Satishkumar BC, Govindaraj A, Nath M, Rao CNR (2000) Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem 10:2115–2119

    Article  CAS  Google Scholar 

  • Shiekh FA, Barakat NAM, Kim BS, Aryal S, Khil MS, Kim HY (2009) Self-assembled amphiphilic polyhedral oligosilsesquioxane (POSS) grafted poly(vinyl alcohol) (PVA) nanoparticles. Mater Sci Eng C29:869–876

    Google Scholar 

  • Sigel A, Sigel H (2000) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun LG, Ma KW, Wang HX, Xiao F, Gao Y, Zhang W, Wang KP, Gao X, Lp N, Wu ZG (2007) JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol 179:129–138

    Article  CAS  Google Scholar 

  • Tabuchi M, Ado K, Kobayashi H, Kageyama H, Masquelier C, Kondo A, Kanno R (1998) Synthesis of LiMnO2 with α-NaMnO2-type structure by a mixed-alkaline hydrothermal reaction. J Electrochem Soc 145:L49–L52

    Article  CAS  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270: 725–727

    Google Scholar 

  • Yamashita T, Vannice AJ (1996) NO decomposition over Mn2O3and Mn3O4. J Catal 163:158–168

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Y, Zhang W, Wang X, Qian Y, Wen X, Yang S (2006) Nanorods of manganese oxides: synthesis, characterization and catalytic application. J Solid State Chem 179:679–684

    Article  CAS  Google Scholar 

  • Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile low-temperature solution approach. Adv Funct Mater 13:639–647

    Article  CAS  Google Scholar 

  • Yuan ZY, Zhang ZL, Du GH, Ren TZ, Su BL (2003) A simple method to synthesise single-crystalline manganese oxide nanowires. Chem Phys Lett 378:349–353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program, 10037345, funded by the Ministry of Knowledge Economy (Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Seob Khil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M.S., Amna, T., Pandeya, D.R. et al. Controlled synthesis of Mn2O3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material. Appl Microbiol Biotechnol 95, 213–222 (2012). https://doi.org/10.1007/s00253-012-3878-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3878-6

Keywords

Navigation