Skip to main content
Log in

Utilization of Anabaena sp. in CO2 removal processes

Modelling of biomass, exopolysaccharides productivities and CO2 fixation rate

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO2 fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 gbio l−1 day−1 and 0.2 geps l−1 day−1, and the CO2 fixation rate measured was 1.0 gCO2 l−1 day−1. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 μE m−2 s−1, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s−1, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO2 into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO2 l−1 day−1 outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acién Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58(6):605–616

    Article  Google Scholar 

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift driven external-loop tubular photobioreactors for outdoor production of microalgae: design and performance of an optimal system. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976

    Article  Google Scholar 

  • Bhavaraju SM, Mashelkar RA, Blanch HW (1978) Bubble motion and mass transfer in non-Newtonian fluids: 1. Single bubble in power law and Bingham fluids. AICHE J 24(6):1063–1070

    Article  Google Scholar 

  • Brindley C, Garcia-Malea MC, Acién FG, Fernández-Sevilla JM, García-Sánchez JL, Molina E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87:723–733

    Article  Google Scholar 

  • Chiang C-L, Lee C-M, Chen P-C (2011) Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour Technol 102:5400–5405

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Fernández-Sevilla JM, Molina Grima E, García-Camacho F, Acién Fernández FG, Sánchez Pérez JA (1998) Photolimitation and photoinhibition as factors determining optimal dilution rate to produce eicosapentaenoic acid from cultures of the microalga Isochrysis galbana. Appl Microbiol Biotechnol 50(2):199–205

    Article  Google Scholar 

  • Garcia-Camacho F, Contreras Gomez A, Mazzuca Sobczuk T, Molina Grima E (2000) Effects of mechanical and hydrodynamic stress in agitated sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050

    Article  Google Scholar 

  • García-Malea MC, Acién FG, Fernández-Sevilla JM, Cerón MC, Molina E (2006) Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb Technol 38(7):981–989

    Article  Google Scholar 

  • González-López CV, Acién Fernández FG, Fernández Sevilla JM, Sánchez Fernández JF, Cerón MC, Molina Grima E (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 100:5904–5910

    Article  Google Scholar 

  • Guerrero MG, Moreno Fernández J, García-González M, Martínez Blanco A, Acién Fernández FG, Molina Grima E (2006). Method of fixing carbon dioxide using a culture of cyanobacteria. WO2006ES70056 20060511

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  Google Scholar 

  • Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Miyachi S (1995) Carbon dioxide uptake rate of Chlorococcum littorale. J Mar Biotechnol 3(1–3):108–110

    Google Scholar 

  • Lama L, Nicolaus B, Calandrelli V, Manca MC, Romano I, Gambacorta A (1996) Effect of growth conditions on endo- and exopolymer biosynthesis in Anabaena cylindrica 10 C. Phytochemistry 42(3):655–650

    Article  CAS  Google Scholar 

  • Molina Grima E, Garcia Camacho F, Sanchez Perez JA, Fernandez Sevilla JM, Acien Fernandez FG, Contreras Gomez A (1994) A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol 61(2):167–173

    Article  CAS  Google Scholar 

  • Molina Grima E, Fernández-Sevilla JM, Sánchez-Pérez JA, García Camacho F (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45(1):59–69

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):231–247

    Article  CAS  Google Scholar 

  • Möllersten K, Yan J, Moreira JR (2003) Potential market niches for biomass energy with CO2 capture and storage: opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285

    Article  Google Scholar 

  • Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (1995) Nitrogen-fixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains. J Appl Phycol 7(1):17–23

    Article  CAS  Google Scholar 

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60(3):175–182

    Article  CAS  Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67(3):283–290

    Article  CAS  Google Scholar 

  • Moreno J, Vargas MA, Rodríguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4–6):191–197

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52(4):639–647

    Article  CAS  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22(1–2):81–91

    Article  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Sánchez-Fernández JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79(5):719–729

    Article  Google Scholar 

  • Sánchez-Mirón A, Cerón García MC, Contreras Gómez A, García-Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16(3):287–297

    Article  Google Scholar 

  • Silva HJ, Cortinas T, Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol 40(1):41–49

    Article  Google Scholar 

  • Skjånes K, Lindblad P, Muller J (2007) BioCO2 — a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24(4):405–413

    Article  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74

    Article  Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8(4–5):283–291

    Article  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516

    Article  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23(1):21–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministerio de Educación y Ciencia (CTQ2004-07628-C02-01/PPQ), Junta de Andalucía (Proyecto de Excelencia), CENIT-CO2 project with financing by ENDESA S.A. and Ministerio de Industria (CDTI), and Plan Andaluz de Investigación (BIO 173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Sánchez Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, J.F.S., González-López, C.V., Fernández, F.G.A. et al. Utilization of Anabaena sp. in CO2 removal processes. Appl Microbiol Biotechnol 94, 613–624 (2012). https://doi.org/10.1007/s00253-011-3683-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3683-7

Keywords

Navigation