Skip to main content
Log in

Bacterial abl-like genes: production of the archaeal osmolyte \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) by homologous overexpression of the yodP–kamA genes in Bacillus subtilis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

\( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) is an archaeal compatible solute whose synthesis is mediated by the sequential reactions of the lysine-2,3-aminomutase AblA and the acetyltransferase AblB. α-Lysine serves as the precursor and is converted by AblA to β-lysine, and AblB then acetylates this intermediate to \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \). The biochemical and biophysical properties of \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) have so far not been studied intensively due to restrictions in the supply of this compound. A search for ablAB-like genes in the genomes of members of the family Bacillaceae revealed the yodP–kamA genes that encode a AblA-related lysine-2,3-aminomutase and AblB-related putative acetyltransferase. In Bacillus subtilis, the yodP–kamA genes are part of a transcriptional unit (yodT–yodS–yodR–yodQ–yodP–kamA) whose expression is upregulated during sporulation and controlled by the mother-cell-specific transcription factor SigE. \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) was not detectable in vegetatively growing or osmotically stressed B. subtilis cells, and the deletion of the yodT–yodS–yodR–yodQ–yodP–kamA region had no noticeable effects on growth in rich or minimal media or osmotic stress resistance. However, when we expressed the yodP–kamA genes outside their natural genetic context from an isopropyl β-d-1-thiogalactopyranoside-inducible promoter on a plasmid in B. subtilis, the recombinant strain synthesized considerable amounts (0.28 μmol/mg protein) of \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \). The data reported here thus open the bottleneck for the large-scale production of \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) to investigate its properties as a compatible solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bremer E (2002) Adaptation to changing osmolarity. In: Sonenshein AL (ed) Bacillus subtilis and its closest relatives: from genes to cells. ASM, Washington, pp 385–389

    Google Scholar 

  • Brill J, Hoffmann T, Putzer H, Bremer E (2011) T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology 157:977–987

    CAS  Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  CAS  Google Scholar 

  • Chen D, Ruzicka FJ, Frey PA (2000) A novel lysine 2,3-aminomutase encoded by the yodO gene of Bacillus subtilis: characterization and the observation of organic radical intermediates. Biochem J 348:539–549

    Article  CAS  Google Scholar 

  • Chirpich TP, Zappia V, Costilow RN, Barker HA (1970) Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. J Biol Chem 245:1778–1789

    CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  Google Scholar 

  • Dyda F, Klein DC, Hickman AB (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103

    Article  CAS  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  Google Scholar 

  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97:8063–8068

    Article  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Gardan R, Rapoport G, Debarbouille M (1997) Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol Microbiol 24:825–837

    Article  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1266

    Article  CAS  Google Scholar 

  • Guerout-Fleury AM, Shazand K, Frandsen N, Stragier P (1995) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336

    Article  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  Google Scholar 

  • Hahne H, Mader U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D (2010) A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882

    Article  CAS  Google Scholar 

  • Harwood CR, Archibald AR (1990) Growth, maintenance and general techniques. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 1–26

    Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  Google Scholar 

  • Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:E2

    Article  Google Scholar 

  • Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    CAS  Google Scholar 

  • Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    CAS  Google Scholar 

  • Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801

    Article  CAS  Google Scholar 

  • Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V (2003) Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) and growth at high salinity. Appl Environ Microbiol 69:6047–6055

    Article  Google Scholar 

  • Pflüger K, Ehrenreich A, Salmon K, Gunsalus RP, Deppenmeier U, Gottschalk G, Müller V (2007) Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. FEMS Microbiol Lett 277:79–89

    Article  Google Scholar 

  • Pflüger K, Wieland H, Müller V (2005) Osmoadaptation in methanogenic archaea: recent insights from a genomic perspective. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at hight salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 241–251

    Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  Google Scholar 

  • Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \), β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693

    CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF (1992) Free amino acid dynamics in marine methanogens - β-amino acids as compatible solutes. J Biol Chem 267:14893–14901

    CAS  Google Scholar 

  • Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  Google Scholar 

  • Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem 136:267–272

    Article  CAS  Google Scholar 

  • Santos H, Lamosa P, Borges N (2006) Characterization and quantification of compatible solutes in (hyper)thermophilic microorganisms. Meth Microbiol 35:173–199

    Article  CAS  Google Scholar 

  • Saum R, Mingote A, Santos H, Müller V (2009) A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: Nε-acetyl-β-lysine can be substituted by glutamate and alanine. Environ Microbiol 11:1056–1065

    Article  CAS  Google Scholar 

  • Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815

    Article  CAS  Google Scholar 

  • Sheikh-Hamad D, Gustin MC (2004) MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Ren Physiol 287:F1102–F1110

    Article  CAS  Google Scholar 

  • Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of Nɛ-acetyl-β-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388

    CAS  Google Scholar 

  • Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci USA 87:9083–9087

    Article  CAS  Google Scholar 

  • Spanheimer R, Müller V (2008) The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch Microbiol 190:271–279

    Article  CAS  Google Scholar 

  • Steil L, Hoffmann T, Budde I, Völker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370

    Article  CAS  Google Scholar 

  • Steil L, Serrano M, Henriques AO, Völker U (2005) Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399–420

    Article  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103:13997–14002

    Article  CAS  Google Scholar 

  • Triadó-Margarit X, Vila X, Galinski EA (2011) Osmoadaptive accumulation of \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) in green sulfur bacteria and Bacillus cereus CECT 148. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.2011.02254.x

  • Vyrides I, Santos H, Mingote A, Ray MJ, Stuckey DC (2010) Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs). Environ Sci Technol 44:7437–7442

    Article  CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    CAS  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    CAS  Google Scholar 

  • Ziegler C, Bremer E, Kramer R (2010) The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78:13–34

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (to V.M.) and by a grant through the LOEWE initiative of the State of Hessen (SynMicro LOEWE Centre; Marburg) (to E.B). The NMR spectrometers are part of the National NMR Network (REDE/1517/RMN/2005), supported by Programa Operacional Ciência e Inovação 2010 and Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Table 1

Identity and homology of B. subtilis YodP to corresponding enzymes in other organisms. (DOC 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Hoffmann, T., Santos, H. et al. Bacterial abl-like genes: production of the archaeal osmolyte \( {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} \) by homologous overexpression of the yodP–kamA genes in Bacillus subtilis . Appl Microbiol Biotechnol 91, 689–697 (2011). https://doi.org/10.1007/s00253-011-3301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3301-8

Keywords

Navigation