Skip to main content
Log in

Perspectives for production and application of resveratrol

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The polyphenol trans-resveratrol (3,5,4′-trihydroxy-trans-stilbene) is one of the best known plant secondary metabolites. The number of articles devoted to trans-resveratrol has been steadily increasing. Trans-resveratrol is a molecule that is beneficial to human health; this explains the high level of interest in trans-resveratrol among different research groups. Therefore, it is important to develop an effective method to produce this compound commercially. The applicability of biotechnology for trans-resveratrol extraction is still uncertain. This review describes and compares the available biotechnological methods of trans-resveratrol production, focusing on their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adrian M, Jeandet P (2006) Trans-resveratrol as an antifungal agent. In: Aggarwal BB, Shishodia S (eds) Resveratrol in health and disease. CRC Press, pp. 475–497

  • Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  Google Scholar 

  • Anekonda TS (2006) Resveratrol—a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    Article  CAS  Google Scholar 

  • Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. Int J Oncol 23:17–28

    CAS  Google Scholar 

  • Bavaresco L, Vezzulli S, Battilani P, Giorni P, Pietri A, Bertuzzi T (2003) Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. J Agric Food Chem 51:6151–6157

    Article  CAS  Google Scholar 

  • Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:2264

    Article  Google Scholar 

  • Becker JW, Armstrong GO, Van der Merwe MJ, Lambrechts M, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85

    Article  CAS  Google Scholar 

  • Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CHR, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672

    Article  CAS  Google Scholar 

  • Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Mérillon JM (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    Article  CAS  Google Scholar 

  • Bonhomme V, Laurain Mattar D, Fliniaux MA (2000) Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Article  CAS  Google Scholar 

  • Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188

    Article  CAS  Google Scholar 

  • Bru MR, Pedreno GMLDE (2003) Method for the production of resveratrol in cell cultures. PCT Patent WO/2003/062406

  • Bru MR, Pedreno GMLDE (2006) Method for the production of resveratrol in cell cultures. US 2006/0205049 A1

  • Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50:3337–3340

    Article  CAS  Google Scholar 

  • Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605

    Article  CAS  Google Scholar 

  • Chen JX, Hall DE, Murata J, De Luca V (2006) L-Alanine induces programmed cell death in V. labrusca cell suspension cultures. Plant Sci 171:734–744

    Google Scholar 

  • Chong JL, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  • Chung IM, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109

    Article  CAS  Google Scholar 

  • Counet C, Callemien D, Collin S (2006) Chocolate and cocoa: new sources of trans-resveratrol and trans-piceid. Food Chem 98:649–657

    Article  CAS  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  CAS  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clement C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2–12

    Article  CAS  Google Scholar 

  • Donnez D, Jeandet P, Clement C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  Google Scholar 

  • Dubrovina AS, Kiselev KV, Veselova MV, Isaeva GA, Fedoreyev SA, Zhuravlev YN (2009) Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. J Plant Physiol 166:1194–1206

    Article  CAS  Google Scholar 

  • Dubrovina AS, Manyakhin AY, Zhuravlev YN, Kiselev KV (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88:727–736

    Article  CAS  Google Scholar 

  • Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624

    Google Scholar 

  • Ferri M, Righetti L, Tassoni A (2011) Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. J Plant Physiol 168:189–195

    Google Scholar 

  • Frankel EN, Waterhouse AL (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104

    Article  CAS  Google Scholar 

  • Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203–214

    Article  CAS  Google Scholar 

  • Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AAE, Panichi V, Filippi BA (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 37:262–270

    Article  CAS  Google Scholar 

  • Gomez-Galera S, Pelacho AM, Gene A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    Article  CAS  Google Scholar 

  • Gronbaek M, Becker U, Johansen D, Gottschau A, Schnohr P, Hein HO, Jensen G, Sorensen TIA (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease and cancer. Ann Intern Med 133:411–419

    CAS  Google Scholar 

  • Gu XL, Creasy L, Kester A, Zeece M (1999) Capillary electrophoretic determination of resveratrol in wines. J Agric Food Chem 47:3223–3227

    Article  CAS  Google Scholar 

  • Guerrero RF, Puertas B, Fernandez MI, Palma M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238

    Article  CAS  Google Scholar 

  • Halls C, Yu O (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 26:77–81

    Article  CAS  Google Scholar 

  • Hurst WJ, Glinski JA, Miller KB, Apgar J, Davey MH, Stuart DA (2008) Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem 56:8374–8378

    Article  CAS  Google Scholar 

  • Husken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  Google Scholar 

  • Jang MS, Cai EN, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  Google Scholar 

  • Jeandet P, Bessis R, Sbaghi M, Meunier P, Trollat P (1995) Resveratrol content of wines of different ages: relationship with fungal disease pressure in the vineyard. Am J Enol Vitic 46:1–4

    CAS  Google Scholar 

  • Jeandet P, Douillt-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  Google Scholar 

  • Katsuyamal Y, Funa N, Miyahisa I, Horinouchi S (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621

    Article  Google Scholar 

  • Katz M, Smits HP, Forster J, Nielsen JB (2008) Fluxome Sciences A/S. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof. US 2008/0286844 A1

  • Keskin N, Kunter B (2008) Production of trans-resveratrol in ‘Cabernet Sauvignon’ (Vitis vinifera L.) callus culture in response to ultraviolet-C irradiation. Vitis 47:193–196

    CAS  Google Scholar 

  • Kim JS, Lee SY, Park SU (2008) Resveratrol production in hairy root culture of peanut. Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 7:3785–3787

    Google Scholar 

  • Kiselev KV, Bulgakov VP (2009) Stability of the rolC gene and its expression in 15-year-old cell cultures of Panax ginseng. Appl Biochem Microbiol 45:252–258

    Article  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Bulgakov VP (2009a) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655

    Article  CAS  Google Scholar 

  • Kiselev KV, Turlenko AV, Tchernoded GK, Zhuravlev YN (2009b) Nucleotide substitutions in rolC and nptII gene sequences during long-term cultivation of Panax ginseng cell cultures. Plant Cell Rep 28:1273–1278

    Article  CAS  Google Scholar 

  • Kiselev KV, Tyunin AP, Manyakhin AY, Zhuravlev YN (2010) Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-010-9842-1

    Google Scholar 

  • Ku KL, Chang PS, Cheng YC, Lien CY (2005) Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol. J Agric Food Chem 53:3877–3881

    Article  CAS  Google Scholar 

  • Kobayashi S, Ding C, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Kouakou TH, Teguo PW, Valls J, Kouadio YJ, Decendit A, Merillon JM (2006) First evidence of trans-resveratrol production in cell suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 86:405–409

    Google Scholar 

  • Krisa S, Larronde F, Budzinski H, Decendit A, Deffieux G, Merillon JM (1999) Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and C-13 biolabeling. J Nat Prod 62:1688–1690

    Article  CAS  Google Scholar 

  • Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269:243–261

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152

    Article  CAS  Google Scholar 

  • Leighton F, Cuevas A, Guasch V, Perez DD, Strobel P, San Martin A, Urzua U, Diez MS, Foncea R, Castillo O, Mizon C, Espinoza MA, Urquiaga I, Rozowski J, Maiz A, Germain A (1999) Plasma polyphenols and antioxidants, oxidative DNA damage and endothelial function in a diet and wine intervention study in humans. Drug Exp Clin Res 25:133–141

    CAS  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martinez-Zapater JM, Bru R, Pedreno MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132

    Google Scholar 

  • Lucas-Abellan C, Fortea I, Lopez-Nicolas JM, Nunez-Delicado E (2007) Cyclodextrins as resveratrol carrier system. Food Chem 104:39–44

    Article  CAS  Google Scholar 

  • Martin N, Vesentini D, Rego C, Monteiro S, Oliveira H, Ferreira RB (2009) Phaeomoniella chlamydospora infection induces changes in phenolic compounds content in Vitis vinifera. Phytopathol Mediterr 48:101–116

    CAS  Google Scholar 

  • Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O'Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003

    Article  CAS  Google Scholar 

  • Morales M, Bru R, Garcia-Carmona F, Barcelo AR, Pedreno MA (1998) Effect of dimethyl-b-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with Xylophilus ampelinus. Plant Cell Tissue Org Cult 53:179–187

    Article  CAS  Google Scholar 

  • Olas B, Wachowicz B, Szewczuk J, Saluk-Juszczak J, Kaca W (2001) The effect of resveratrol on the platelet secretory process induced by endotoxin and thrombin. Microbios 105:7–13

    CAS  Google Scholar 

  • Palazon J, Cusido RM, Gonzalo J, Bonfill M, Morales S, Pinol MT (1998) Relation between the amount the rolC gene product and indole alkaloid accumulation in Catharantus roseus transformed root cultures. J Plant Physiol 153:712–718

    CAS  Google Scholar 

  • Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985

    Article  CAS  Google Scholar 

  • Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Couteur DL, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  • Roemer K, Mahyar-Roemer M (2002) The basis for the chemopreventive action of resveratrol. Drugs Today 38:571–580

    Article  CAS  Google Scholar 

  • Rupprich N, Hildebrand H, Kindl H (1980) Substrate specificity in vivo and in vitro in the formation of stilbenes—biosynthesis of rhaponticin. Arch Biochem Biophys 200:72–78

    Article  CAS  Google Scholar 

  • Sahai O, Knuth M (1985) Commercializing plant-tissue culture process—economics, problems and prospects. Biotechnol Prog 1:1–9

    Article  CAS  Google Scholar 

  • Sameer S, Kanwaljit C, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide F TNF-alpha. Phytother F Res 21:278–283

    Article  Google Scholar 

  • Schijlen E, Ric de Vos CH, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  CAS  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, Keukeleire DD, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009

    Article  CAS  Google Scholar 

  • Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  CAS  Google Scholar 

  • Sharma S, Kulkarni SK, Chopra K (2007) Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 21:89–94

    Article  CAS  Google Scholar 

  • Stervbo U, Vang O, Bonnesen C (2007) A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem 101:449–457

    Article  CAS  Google Scholar 

  • Takaoka MJ (1940) Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imp Univ 3:1–16

    CAS  Google Scholar 

  • Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    Article  CAS  Google Scholar 

  • Teguo PW, Decendit A, Krisa S, Deffieux C, Vercauteren J, Merillon JM (1996) The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures. J Nat Prod 59:1189–1191

    Article  CAS  Google Scholar 

  • Tokusoglu O, Unal MK, Yemis F (2005) Determination of the phytoalexin resveratrol (3,5,4′-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J Agric Food Chem 53:5003–5009

    Article  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stocker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Article  CAS  Google Scholar 

  • Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9(Suppl 2):S6

    Article  Google Scholar 

  • Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, Pasinetti GM (2006) Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20:2313–2320

    Article  CAS  Google Scholar 

  • Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:22

    Article  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  • Yang MH, Kuo CH, Hsieh WC, Ku KL (2010) Investigation of microbial elicitation of trans-resveratrol and trans-piceatannol in peanut callus led to the application of chitin as a potential elicitor. J Agric Food Chem 58:9537–9541

    Article  CAS  Google Scholar 

  • Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Alexandra S. Dubrovina for helpful comments on the manuscript. This work was supported by grant of the Russian Foundation for Basic Research (10-04-00,189-a), by grants of the Far East Division of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Kiselev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, K.V. Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90, 417–425 (2011). https://doi.org/10.1007/s00253-011-3184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3184-8

Keywords

Navigation