Skip to main content
Log in

The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so, the sequences located upstream, between and downstream of the −35 and −10 consensus promoter sequences were completely randomized and some variability was introduced in the −35 (position 6) and −10 (positions 3, 4 and 5) hexamers recognized by the major vegetative sigma factor HrdB. The synthetic promoters were cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different concentrations of neomycin (20, 50, and 100 μg ml−1). Promoter strengths varied up to 12-fold, in small increments of activity increase, as determined by reverse transcriptase-PCR. This collection of promoters of various strengths can be useful for the fine-tuning of gene expression in genetic engineering projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters are more G rich than those of the weak promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19(3):327–336

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147

    Article  Google Scholar 

  • Bibb MJ, Buttner MJ (2003) The Streptomyces coelicolor developmental transcription factor sigmaBldN is synthesized as a proprotein. J Bacteriol 185(7):2338–2345

    Article  CAS  Google Scholar 

  • Bibb MJ, White J, Ward JM, Janssen GR (1994) The mrna for the 23s rrna methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14(3):533–545

    Article  CAS  Google Scholar 

  • Bland C, Newsome AS, Markovets AA (2010) Promoter prediction in E. coli based on SIDD profiles and artificial neural networks. BMC Bioinform 11(Suppl 6):S17

    Article  Google Scholar 

  • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. J Biol Chem 283(37):25186–25199

    Article  CAS  Google Scholar 

  • Bourn WR, Babb B (1995) Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 23(18):3696–3703

    Article  CAS  Google Scholar 

  • Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat reviews 2(1):57–65

    Article  CAS  Google Scholar 

  • Buttner MJ, Brown NL (1987) Two promoters from the Streptomyces plasmid pIJ101 and their expression in Escherichia coli. Gene 51(2–3):179–186

    Article  CAS  Google Scholar 

  • Buttner MJ, Chater KF, Bibb MJ (1990) Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol 172(6):3367–3378

    CAS  Google Scholar 

  • Chater KF (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4(6):667–673

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Weblogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  Google Scholar 

  • Deng Z, Kieser T, Hopwood DA (1986) Expression of a Streptomyces plasmid promoter in Escherichia coli. Gene 43(3):295–300

    Article  CAS  Google Scholar 

  • Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat reviews 7(1):36–49

    Article  Google Scholar 

  • Flores S, de Anda-Herrera R, Gosset G, Bolivar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87(4):485–494

    Article  CAS  Google Scholar 

  • Goodsell DS, Dickerson RE (1994) Bending and curvature calculations in b-DNA. Nucleic Acids Res 22(24):5497–5503

    Article  CAS  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    Article  CAS  Google Scholar 

  • Guo FB, Yu XJ (2007) Separate base usages of genes located on the leading and lagging strands in Chlamydia muridarum revealed by the z curve method. BMC Genomics 8:366

    Article  Google Scholar 

  • Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol 24(2):53–55

    Article  CAS  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 101(39):14031–14035

    Article  CAS  Google Scholar 

  • Hook-Barnard IG, Hinton DM (2007) Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul Syst Bio 1:275–293

    Google Scholar 

  • Hook-Barnard IG, Hinton DM (2009) The promoter spacer influences transcription initiation via sigma70 region 1.1 of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 106(3):737–742

    Article  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64(1):82–87

    CAS  Google Scholar 

  • Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast Chichester 20(15):1263–1272

    Article  CAS  Google Scholar 

  • Kang JG, Hahn MY, Ishihama A, Roe JH (1997) Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25(13):2566–2573

    Article  CAS  Google Scholar 

  • Karlin S (1999) Bacterial DNA strand compositional asymmetry. Trends Microbiol 7(8):305–308

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich Research Park, Colney

    Google Scholar 

  • Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57(5):1252–1264

    Article  CAS  Google Scholar 

  • Mann S, Chen YP (2010) Bacterial genomic G+C composition-eliciting environmental adaptation. Genomics 95(1):7–15

    Article  CAS  Google Scholar 

  • Morton BR (1999) Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis. Proc Natl Acad Sci USA 96(9):5123–5128

    Article  CAS  Google Scholar 

  • Mrazek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95(7):3720–3725

    Article  CAS  Google Scholar 

  • Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ (2001) Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmar regulon. Mol Microbiol 42(4):1007–1020

    Article  CAS  Google Scholar 

  • Potuckova L, Kelemen GH, Findlay KC, Lonetto MA, Buttner MJ, Kormanec J (1995) A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17(1):37–48

    Article  CAS  Google Scholar 

  • Prosseda G, Mazzola A, Di Martino ML, Tielker D, Micheli G, Colonna B (2010) A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro. Biochemistry 49(13):2778–2785

    Article  CAS  Google Scholar 

  • Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiol Read 152(Pt 4):1011–1019

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmitt-John T, Engels JW (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36(4):493–498

    Article  CAS  Google Scholar 

  • Solem C, Koebmann B, Jensen PR (2008) The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Biotechnol Appl Biochem 50(Pt 1):35–40

    Article  CAS  Google Scholar 

  • Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20(5):961–974

    Article  CAS  Google Scholar 

  • Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166(1):133–137

    Article  CAS  Google Scholar 

  • Tanaka K, Shiina T, Takahashi H (1991) Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes. Mol Gen Genet 229(3):334–340

    Article  CAS  Google Scholar 

  • Tornoe J, Kusk P, Johansen TE, Jensen PR (2002) Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 297(1–2):21–32

    Article  CAS  Google Scholar 

  • van Wezel GP, Krab IM, Douthwaite S, Bibb MJ, Vijgenboom E, Bosch L (1994) Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon. Microbiol Read 140(Pt 12):3357–3365

    Article  Google Scholar 

  • Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ (1986) Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203(3):468–478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European program ACTINOGEN (http://www.swan.ac.uk/ils/Research/BioMed/ActinoGen/), the Centre National de la Recherche Scientifique (http://www.cnrs.fr/), the University Paris Sud 11 (http://www.u-psud.fr), and the Pôle de Recherche et d'Enseignement supérieur UniverSud Paris (http://www.universud-paris.fr).

The authors wish to thank Guislaine Refregier and Barry Holland for stimulating discussions, and we are most grateful to Jeffrey Mellin for correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Joëlle Virolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seghezzi, N., Amar, P., Koebmann, B. et al. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90, 615–623 (2011). https://doi.org/10.1007/s00253-010-3018-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3018-0

Keywords

Navigation