Skip to main content
Log in

Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Strains of the cyanobacterium Microcystis aeruginosa were isolated into pure culture from a variety of lakes, rivers, and reservoirs in Portugal. Samples were tested with matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) to investigate the presence of various peptide groups including aeruginosins, microginins, anabaenopeptins, cyanopeptilins, microcystins, and microviridins and other peptide-like compounds. Binary data, based on the presence and absence of different peptide groups, were analyzed by phylogenetic inference. DNA was also extracted from the samples and tested using a range of primers. Those strains that gave positive results for a Microcystis-specific primer pair were further analyzed for the presence of genes linked to the biosynthesis of microginin and microcystin. The results showed that a wide range of microcystin forms were produced by the strains among which MC-LR, -FR, -RR, -WR, and -YR were the most common. The peptide profiles obtained from the MALDI analysis were assessed using cluster analysis which resulted in the formation of distinct groups or chemotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Baker PD (1992) Identification of common noxious cyanobacteria. Part II—Chroococcales and Oscillatoriales. Research Report No. 46, Australian Centre for Water Treatment and Water Quality Research

  • Baker JA, Neilan BA, Entsch B, McKay DB (2001) Identification of cyanobacteria and their toxigenicity in environmental samples by rapid molecular analysis. Environ Toxicol 16:472–482

    Article  CAS  Google Scholar 

  • Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular techniques. Appl Environ Microbiol 68:6070–6076

    Article  CAS  Google Scholar 

  • Bourrelly P (1970) Les algues déau douce. Initiation à la systematique. Les algues bleues ou cyanophycées. Editions N. Boubée & Cie

  • Christiansen G, Kurmayer R, Liu Q, Börner T (2006) Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72(1):117–123

    Article  CAS  Google Scholar 

  • Chu FS, Huang X, Wei RD (1990) Enzyme linked immunosorbent assay for microcystin in blue green algal blooms. J Assoc Off Anal Chem 73:451–456

    CAS  PubMed  Google Scholar 

  • Dittmann E, Börner T (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203(3):192–200

    Article  CAS  Google Scholar 

  • Dittmann E, Neilan BA, Börner T (2001) Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. App Microbiol Biotechnol 57:467–473

    Article  CAS  Google Scholar 

  • Falconer IR, Humpage AR (1996) Tumor promotion by cyanobacterial toxins. Phycologia 35(6):74–79

    Article  Google Scholar 

  • Fastner J, Erhard M, Carmichael WW, Sun F, Rinehart KL, Rönicke H, Chorus I (1999) Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch Hydrobiol 145:147–163

    Article  CAS  Google Scholar 

  • Fastner J, Erhard M, Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization–time of flight mass spectrometry. App Environ Microbiol 67:5069–5076

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP. Phylogeny inference package. Cladistics 5:164–166

    Google Scholar 

  • Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B (2007) Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188:15–25

    Article  CAS  Google Scholar 

  • Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410

    Article  CAS  Google Scholar 

  • Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Microginins 299-A and -B, leucine aminopeptidase inhibitors from the cyanobacterium Microcystis aeruginosa (NIES-299). Tetrahedron 53:10281–10288

    Article  CAS  Google Scholar 

  • Ishida K, Matsuda H, Murakami M (1998) Four new microginins, linear peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron 54:13475–13484

    Article  CAS  Google Scholar 

  • Ishida K, Kato T, Murakami M, Watanabe M, Watanabe MF (2000) Microginins, zinc metalloproteases inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron 56:8643–8656

    Article  CAS  Google Scholar 

  • Jungblut A-D, Hawes I, Mountfort D, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529

    Article  CAS  Google Scholar 

  • Kotai J (1972) Instructions for preparation of modified nutrient solution for algae, vol. 5. Norwegian Institute for Water Research, Oslo, pp 11–69

    Google Scholar 

  • Kotak BG, Lam AKY, Prepas EE, Kenefick SL, Hrudy SE (1995) Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. J Phycol 32:248–263

    Article  Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153

    Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118

    Article  CAS  Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17:373–384

    CAS  Google Scholar 

  • Neilan BA, Jacobs D, Deldot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  CAS  Google Scholar 

  • Neumann U, Forchert A, Flury T, Weckesser J (1997) Microginin FR1, a linear peptide from a water bloom of Microcystis aeruginosa. FEMS Microbiol Lett 153:475–478

    Article  CAS  Google Scholar 

  • Nonneman D, Zimba PV (2002) A PCR-based test to assess the potential for microcystin occurrence in channel catfish production ponds. J Phycol 38:230–233

    Article  Google Scholar 

  • Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1(7):359–366

    Article  Google Scholar 

  • Oullette AJA, Handy SM, Wilhelm W (2006) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microbiol Ecol 51(12):154–165

    Article  Google Scholar 

  • Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005a) Variation between strains of the cyanobacterium Microcystis aeruginosa isolated from a Portuguese river. J Appl Microbiol 99:749–757

    Article  CAS  Google Scholar 

  • Saker ML, Jungblut A-D, Neilan BA, Rawn DFK, Vasconcelos VM (2005b) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46:555–562

    Article  CAS  Google Scholar 

  • Saker ML, Vale M, Vasconcelos VM (2006) Molecular techniques for the early warning of toxic cyanobacteria blooms in freshwater lakes and rivers. Appl Microbiol Biotechnol 75:441–449

    Article  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153

    Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16s rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818

    Article  CAS  Google Scholar 

  • Vasconcelos VM (2001) Freshwater cyanobacteria and their toxins in Portugal. In: Chorus I (ed) Cyanotoxins—occurrence, causes, consequences. Springer, Berlin, pp 62–67

    Google Scholar 

  • Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz emend Elekin. Arch Hydrobiol 134:295–305

    CAS  Google Scholar 

  • Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1996) Microcystin (heptapeptide hepatotoxins) diversity in cyanobacterial blooms collected in Portuguese fresh waters. Water Res 30:2377–2384

    Article  CAS  Google Scholar 

  • Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Grand-lieu lake (France). Microb Ecol 35:126–135

    Article  CAS  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis spp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602

    Article  CAS  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  CAS  Google Scholar 

  • Welker M, Fastner J, Erhard M, von Döhren H (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374

    Article  CAS  Google Scholar 

  • Welker M, Brunke M, Preussel K, Lippert I, von Döhren H (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150:1785–1796

    Article  CAS  Google Scholar 

  • Welker M, Maršálek B, Šejnohová L, von Döhren H (2006) Detection and identification of oligopeptides in Microcystis colonies: toward an understanding of metabolic diversity. Peptides 27(9):2090–2103

    Article  CAS  Google Scholar 

  • WHO (1998) Guidelines for Drinking-Water Quality. Addendum to vol. 2: Health Criteria and other Supporting Information, 2nd edn. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor M. Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, J., Saker, M.L., Moreira, C. et al. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl Microbiol Biotechnol 82, 951–961 (2009). https://doi.org/10.1007/s00253-009-1877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1877-z

Keywords

Navigation