Skip to main content
Log in

Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A series of mesoporous and hydrophilic novel bead carriers containing epoxy groups were synthesized by modified inverse suspension polymerization. Glycidyl methacrylate and acryloyloxyethyl trimethyl ammonium chloride were used as the monomers, and divinyl benzene, allyl methacrylate, and ethylene glycol dimethacrylate as crosslinking agents, respectively. The resulting carriers were employed in the immobilization of glucoamylase (Glu) with covalent bond between epoxy groups and enzymes. The activity recovery of the three series of immobilized Glus could reach 76%, 79%, and 86%, respectively. The immobilized Glus exhibit excellent stability and reusability than that of the free ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arica MY, Hasirci V, Alaeddinoglu NG (1995) Covalent immobilization of a-amylase onto PHEMA microspheres, preparation and application to fixed-bed reactor. Biomaterials 16:761–768

    Article  CAS  Google Scholar 

  • Arica MY, Alaeddinoglu NG, Hasirci V (1998) Immobilization of glucoamylase onto activated PHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzyme Microb Technol 22:152–157

    Article  CAS  Google Scholar 

  • Arica MY, Oktem HA, Oktem Z, Tuncel SA (1999) Immobilization of catulase in poly(isopropylacrylamide-co-hydroxyethylmethacrylate) thermally reversible hydrogels. Polym Int 48:879–884

    Article  CAS  Google Scholar 

  • Arica MY, Handan Y, Patir S, Denizli A (2000) Immobilization of glucoamylase onto space-arm–arm attached magnetic poly methylmethacrylate microspheres: characterization and application to a continuous flow reactor. J Mol Catal B Enzymol 11:127–138

    Article  CAS  Google Scholar 

  • Bahar T, Celebi SS (1998) Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme Microb Technol 23:301–304

    Article  CAS  Google Scholar 

  • Bai YX, Li YF, Yang Y, Yi LX (2006a) Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J Biotechnol 125:574–582

    Article  CAS  Google Scholar 

  • Bai YX, Li YF, Wang MT (2006b) Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzyme Microb Technol 39:540–547

    Article  CAS  Google Scholar 

  • Bai YX, Li YF, Yang Y, Yi LX (2006c) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem 41:770–777

    Article  CAS  Google Scholar 

  • Bickerstaff GF (1997) Immobilization of enzymes and cells. Methods in biotechnology 1. Humana, Totowa

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Busto MD, Ortega N, Perez-Mateos M (1997) Effect of immobilization on the stability of bacterial and fungal β-d-glucosidase. Process Biochem 32:441–449

    Article  CAS  Google Scholar 

  • Chibata I, Tosa T, Sato T (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal B Enzym 37:1–24

    Article  CAS  Google Scholar 

  • Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starches to sugars. Trends Biotechnol 15:349–352

    Article  CAS  Google Scholar 

  • Demircioglu H, Beyenal H, Tanyolac A, Hasirci N (1994) Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices. Polym Int 35:321–327

    Article  CAS  Google Scholar 

  • Dullien FAL, Batra VK (1970) Determination of the structure of porous media. Ind Eng Chem 62(10):25–52

    Article  CAS  Google Scholar 

  • Duncombe GR, Line WF, Chicoye E (1984) Immobilized glucoamylase reactor for preparing a low calorie beer. US Patent. No. 4430348

  • Hartmeier W (1985) Immobilized biocatalysts—from simple to complex systems. Trends Biotechnol 3:149–153

    Article  CAS  Google Scholar 

  • Ida J, Matsuyama T, Yamamoto H (2000) Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP–CVD. Biochem Eng J 5:179–184

    Article  CAS  Google Scholar 

  • Kahraman MV, Bayramoğlu G, Kayaman-Apohan N, Güngör A (2007) UV-curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React Funct Polym 67:97

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  CAS  Google Scholar 

  • Katchalski-Katsir E, Kraemer D, Eupergit C (2000) A carrier for immobilization of enzymes of industrial enzymes. J Mol Catal B Enzym 10:157–176

    Article  Google Scholar 

  • Laska J, Wlodarczyk J, Zaborska W (1999) Polyaniline as a carrier for urease immobilization. J Mol Catal B Enzym 6:549–553

    Article  CAS  Google Scholar 

  • Li YF, Zhuo RX (1992) Study on the synthesis of polyacrylamidoxime-polyvinyl alcohol macroporous bead carriers and immobilized thermolysin. J Mol Catal (China) 6(6):440–447

    CAS  Google Scholar 

  • Li YF, Li JR, Fu LD, Li YZ (2000) Study on the immobilization of papain with a macroporous bead carrier of copolymer containing monomer units of N-aminoethyl acrylamide and vinyl alcohol. Chin J Polym Sci 18(1):25–31

    Google Scholar 

  • Li YF, Jia F, Li JR, Liu G, Li YZ (2001a) Papain immobilization on a nitrilon fibre carrier containing primary amine groups. Biotechnol Appl Biochem 33(1):29–34

    Article  CAS  Google Scholar 

  • Li YF, Li JR, Fu LD (2001b) Preparation and application of immobilized enzymes. Polym Bull (China) 2:13–17

    Google Scholar 

  • Mateo C, Fernández-Lorente G, Abian O, Fernández-Lafuente R, Guisán JM (2000) Multifunctional epoxy carriers: a new tool to improve the covalent immobilization of proteins: the promotion of physical adsorptions of proteins on the carriers before their covalent linkage. Biomacromolecules 1:739–745

    Article  CAS  Google Scholar 

  • Mateo C, Torres R, Fernández-Lorente G, Ortiz C, Fuentes M, Hidalgo A, López-Gallego F, Abian O, Palomo JM, Betancor L, Pessela BCC, Guisan JM, Fernández-Lafuente R (2003) Epoxy-amino groups: a new tool for improved immobilization of proteins by the epoxy method. Biomacromolecules 4:772–777

    Article  CAS  Google Scholar 

  • Miller GN (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 81:426–428

    Article  Google Scholar 

  • Nelson N (1944) Photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Oh JT, Kim JH (2000) Preparation and properties of immobilized amyloglucosidase on nonporous PS/PNaSS microspheres. Enzyme Microb Technol 27:356–366

    Article  CAS  Google Scholar 

  • Silva RN, Asquieri ER, Fernandes KF (2005) Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochem 40:1155–1159

    Article  CAS  Google Scholar 

  • Sundberg L, Porath J (1974) Preparation of adsorbents for biospecific affinity chromatography. J Chromatogr A 90:87–98

    Article  CAS  Google Scholar 

  • Tanaka H, Kurosawa H, Kokufuta E, Veliky IA (1984) Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quaternized poly(ethyleneimine). Biotechnol Bioeng 26:1393–1399

    Article  CAS  Google Scholar 

  • Tanriseven A, Bozkurt Uluda Y, Dogan S (2002) A novel method for the immobilization of glucoamylase to produce glucose from maltodextrin. Enzyme Microb Technol 30(3):406–409

    Article  CAS  Google Scholar 

  • Uhlich T, Ulbricht M, Tomaschewski G (1996) Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme Microb Technol 19:124–131

    Article  CAS  Google Scholar 

  • Wheatley JB, Schmidt DE (1999) Salt induced immobilization of affinity ligands onto epoxide-activated carriers. J Chromatogr A 849:1–12

    Article  CAS  Google Scholar 

  • Yajima H, Hirose A, Ishii T, Ohsawa T, Endo R (1989) Immobilization of glucoamylase onto alternative acrylonitrile-butadiene copolymer by amidination reaction. Biotechnol Bioeng 33:795–798

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 50703017) and the Gansu Province Natural Science Foundation (No. 0710RJZA032) for the financial support given to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiao Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Li, Y. & Lei, L. Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization. Appl Microbiol Biotechnol 83, 457–464 (2009). https://doi.org/10.1007/s00253-009-1864-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1864-4

Keywords

Navigation