Skip to main content
Log in

A mutation upstream of an ATPase gene significantly increases magnetosome production in Magnetospirillum gryphiswaldense

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A mutant of Magnetospirillum gryphiswaldense, NPHB, was obtained from a conjugation experiment. An aberrant recombination occurred between a putative elongation factor-G gene (fus-like) of the bacterial chromosome and the chloramphenicol resistant gene (cat) of a suicide vector, pSUP202. Complementary experiments and transcription analysis of genes around the recombinant site showed that the cat promoter enhanced the expression of adenosine triphosphatase gene downstream. Adenosine triphosphate hydrolyzing activity in NPHB was 35% higher than in the wild-type strain (M. gryphiswaldense MSR-1). NPHB accumulated 71% less poly-β-hydroxybutyrate and consumed 56% more oxygen and 40% more lactate than MSR-1. The magnetosome content of NPHB was 69% higher than MSR-1 in flask culture. NPHB cultured in a 7.5-L bioreactor gave a maximum yield of 58.4 ± 6.4 mg magnetosomes per liter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  CAS  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  • Burdon KL (1946) Fatty acid material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–678

    Article  CAS  Google Scholar 

  • Ceyhan B, Alhorn P, Lang C, Schüler D, Niemeyer CM (2006) Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small 2:1251–1255

    Article  CAS  Google Scholar 

  • DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    Article  CAS  Google Scholar 

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled bioreactor. Appl Microbiol Biotechnol 61:536–544

    Article  CAS  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Jiang W, Zhao D, Li Y, Tian J, Wang Z, Li J (2002) Submerged culture of Magnetospirillum gryphiswaldense under N2-fixing condition and regulation of activity of nitrogen fixation. Chin Sci Bull 47:2095–2099

    Article  Google Scholar 

  • Jiang W, Sun J, Li Y, Pan Y, Zhang Y (2005) Effect of conditions on growth of Magnetospirillum gryphiswaldense. Chin J Mod Med 15:3521–3526

    Google Scholar 

  • Keister DL, Evans WR (1976) Oxygen requirement for acetylene reduction by pure cultures of rhizobia. J Bacteriol 129:149–153

    Article  Google Scholar 

  • Komeili A (2007) Molecular mechanisms of magnetosome formation. Ann Rev Biochem 76:1–16

    Article  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Li F, Li Y, Jiang W, Wang Z, Li J (2005) Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosomes deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1. Sci China, Ser C-Life Sci 48:574–584

    Article  CAS  Google Scholar 

  • Li X, Jiang W, Sun J, Wang G, Guan F, Li Y (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81

    Article  Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179(20):6228–6237

    Article  CAS  Google Scholar 

  • Maeda-Yorita K, Aki K, Sagai H, Misaki H, Massey V (1995) l-lactate oxidase and l-lactate monooxygenase: mechanistic variations on a common structural theme. Biochimie 77(7–8):631–642

    Article  CAS  Google Scholar 

  • Matsunaga T, Suzuki T, Tanaka M, Arakaki A (2007) Molecular analysis of magnetotactic bacteria and development of functional bacterial magneticparticles for nano-biotechnology. Trends Biotechnol 25(4):182–188

    Article  CAS  Google Scholar 

  • Rehm B (2003) Polyester synthases: natural catalysts for plastics. J Biochemistry 376:15–33

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York

    Google Scholar 

  • Schüler D (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch Microbiol 181:1–7

    Article  Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    Article  Google Scholar 

  • Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Phüler A (1983) A broad host-range mobilization system for in vivo genetic engineering transposon mutagenesis in gram-negative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  • Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 79(3):389–397

    Article  CAS  Google Scholar 

  • Yang C, Takeyama H, Tanaka T, Matsunaga T (2001) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb Technol 29:13–19

    Article  CAS  Google Scholar 

  • Zhang Y, Pohlmann EL, Roberts GP (2005) GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 187:1254–1265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese High Technology Research and Development Program (Grant no. 2006AA02Z233 and 2007AA021805) and Chinese National Science Foundation (Grant no. 30570023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiesheng Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Ding, Y., Jiang, W. et al. A mutation upstream of an ATPase gene significantly increases magnetosome production in Magnetospirillum gryphiswaldense . Appl Microbiol Biotechnol 81, 551–558 (2008). https://doi.org/10.1007/s00253-008-1665-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1665-1

Keywords

Navigation