Skip to main content

Advertisement

Log in

Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostrate cancer cell line

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2008

Abstract

A mutant Aspergillus carbonarius selected for temperature tolerance after UV treatment, when grown in shake flasks, produced mycelia bearing yellow pigment. Since the mutant was affected in sterol biosynthetic pathway, the pigment was apparently produced to maintain membrane fluidity and rigidity for growth sustenance in low-pH culture broth. Nuclear magnetic resonance analyses characterizing the pigment as a partially saturated canthaxanthin, containing β-ionone end rings, suggested its application as a retinoid. When tested for this property in retinoic acid receptor expressing prostate cancer cell line, LNCaP, the fungal partially saturated canthaxanthin induced apoptosis. Low apoptosis percentage in DU145 prostrate cancer cells that does not express functional retinoic acid receptor-β (RAR-β) suggested binding specificity of the partially saturated canthaxanthin for RAR-β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albers S, van de Vossenberg JLCM, Driessen AJM, Konings WN (2001) Bioenergetics and solute uptake under extreme conditions. Extremophiles 5:285–294

    CAS  PubMed  Google Scholar 

  • Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1:181–193

    CAS  PubMed  Google Scholar 

  • Bartsch D, Boye B, Baust C, Hausen H, Schwarz E (1992) Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor gene in nontumorigenic and tumorigenic HeLa hybrid cells. EMBO J 11:2283–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram JS (1999) Carotenoids and gene regulation. Nutr Rev 57:182–191

    CAS  PubMed  Google Scholar 

  • Bertram JS, Vine AL (2005) Cancer prevention by retinoids and carotenoids: independent action on a common target. Biochim Biophys Acta 1740:170–178

    CAS  PubMed  Google Scholar 

  • Burgstaller W (1997) Transport of small ions and molecules through plasma membrane of filamentous fungi. Crit Rev Microbiol 23:1–46

    CAS  PubMed  Google Scholar 

  • Campbell MJ, Park S, Uskokovic MR, Dawson MI, Koeffler HP (1998) Expression of retinoic acid receptor-b sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog. Endocrinology 139:1972–1980

    CAS  PubMed  Google Scholar 

  • Dawson MI (2000) The importance of vitamin A in nutrition. Curr Pharm Des 6:311–325

    CAS  PubMed  Google Scholar 

  • de Luca LM (1991) Retinoids and their receptors in differentiation, embryogenesis and neoplasia. FASEB J 5:2924–2933

    PubMed  Google Scholar 

  • Duh PD, Yen GC (1997) Antioxidative activity of three herbal water extracts. Food Chem 60:639–645

    CAS  Google Scholar 

  • Egea PF, Mitschelar A, Moras D (2002) Molecular recognition of agonist ligands by RXRs. Mol Endocrinol 16:987–997

    CAS  PubMed  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gabrielska J, Gruszecki LW (1996) Zeaxanthin (dihydroxy-b-carotene) but not b-carotene rigidifies lipid membranes: a 1H-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim Biophys Acta 1285:167–174

    CAS  PubMed  Google Scholar 

  • Garattini E, Gianni M, Terao M (2007) Retinoids as differentiating agents in oncology: a network of interactions with intracellular pathways as the basis for rational therapeutic combinations. Curr Pharm Des 13:1375–1400

    CAS  PubMed  Google Scholar 

  • Geisen C, Denk C, Gremm B, Baust C, Karger A, Bollag W, Schwarz E (1997) High-level expression of the retinoic acid receptor b gene in normal cells of the uterine cervix is regulated by the retinoic acid receptor a and is abnormally down-regulated in cervical carcinoma cells. Cancer Res 57:1460–1467

    CAS  PubMed  Google Scholar 

  • Gordon CL, Khalaj V, Ram AFJ, Archer DB, Brookman JL, Trinci APJ, Jeenes DJ, Doonman JH, Wells B, Punt PJ, van den Hondel CAMJJ, Robson GD (2000) Glucoamylase: green fluorescent protein fusion to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426

    CAS  PubMed  Google Scholar 

  • Gruszecki WI, Strzalka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane? Biochim Biophys Acta 1060:310–314

    CAS  Google Scholar 

  • Gundersen TE, Blomhoff R (2001) Qualitative and quantitative liquid chromatographic determination of natural retinoids in biological samples. J Chromatogr A 935:13–43

    CAS  PubMed  Google Scholar 

  • Haines TH (2001) Do sterol reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324

    CAS  PubMed  Google Scholar 

  • Hesse SJA, Ruijter GJG, Dijkema C, Visser J (2002) Intracellular pH homeostasis in filamentous fungi. Eur J Biochem 269:3485–3494

    CAS  PubMed  Google Scholar 

  • Huang C, Ma W, Dawson MI, Rincon M, Flavell RA, Dong Z (1997) Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc Natl Acad Sci U S A 94:5826–5830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klaholz BP, Moras D (1998) A structural view of ligand binding to the retinoid receptors. Pure Appl Chem 70:41–47

    CAS  Google Scholar 

  • Lazrak T, Wolf G, Albrecht AM, Nakatani Y, Ourisson G, Kates M (1988) Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. Biochim Biophys Acta 939:160–162

    CAS  Google Scholar 

  • Li Y, Lin B, Agadir A, Liu R, Dawson MI, Reed JC, Fontana JA, Bost F, Hobbs PD, Zheng Y, Chen G, Shroot B, Mercola D, Zhang X (1998) Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines. Mol Cell Biol 18:4719–4731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mailfait S, Thoreau E, Belaiche D, Formstecher BS (2000) Critical role of the H6–H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RAR alpha. J Mol Endocrinol 24:353–364

    CAS  PubMed  Google Scholar 

  • McCormick DL, Rao KVN, Steele VE, Lubet RA, Kellof GJ, Bosland MG (1999) Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer Res 59:521–524

    CAS  PubMed  Google Scholar 

  • Nagao A (2004) Oxidative conversion of carotenoids to retinoids and ther products. J Nutr 134:237S–240S

    CAS  PubMed  Google Scholar 

  • Nemec T, Jernejc K, Cimerman A (1997) Sterols and fatty acids of different Aspergillus species. FEMS Microbiol Lett 149:201–205

    CAS  Google Scholar 

  • Niles RM (2004) Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res 555:81–96

    CAS  PubMed  Google Scholar 

  • Petrovic U, Gunde-Cimerman N, Plemenitas A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180:325–330

    CAS  PubMed  Google Scholar 

  • Serrano R (1988) H+-ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Methods Enzymol 157:533–544

    CAS  PubMed  Google Scholar 

  • Singh RP, Agarwal C, Agarwal R (2003) Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis 24:555–563

    CAS  PubMed  Google Scholar 

  • Socaciu C, Jessel R, Diehl HA (2000) Carotenoid incorporation into microsomes: yields, stability and membrane dynamics. Spectrochim Acta Part A 56:2799–2809

    CAS  Google Scholar 

  • Socaciu C, Bojarski P, Aberle L, Diehl HA (2002) Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently. Biophys Chem 99:1–15

    CAS  PubMed  Google Scholar 

  • Stoudt TH, Foster JW (1954) The microbiological synthesis of ergosterol. Appl Environ Microbiol 2:385–387

    CAS  Google Scholar 

  • Sun S, Yue P, Lotan R (1999) Induction of apoptosis by N-(4-Hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors and apoptosis-related genes in human prostate carcinoma cells. Mol Pharmacol 55:403–410

    CAS  PubMed  Google Scholar 

  • Teicher VB, Kucharski N, Martin H, Saag P, Sies H, Stahl W (1999) Biological activities of apo-canthaxanthinoic acids related to gap junctional communication. Arch Biochem Biophys 365:150–155

    CAS  PubMed  Google Scholar 

  • van de Vossenberg JLCM, Ubbink-Kok T, Elferink MGL, Driessen AJM, Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol 18:925–932

    PubMed  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    CAS  PubMed  Google Scholar 

  • Wisniewska A, Subczynski WK (1998) Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim Biophys Acta 1368:235–246

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Dinesh K Sukumaran, Director, Magnetic Resonance Center, Department of Chemistry, State University of New York, Buffalo, NY, USA for his assistance in NMR data and its analysis. NK, KRS, KSV, and RK were supported by fellowship grants from Indian Government research agencies, the Council of Scientific Industrial Research, Indian Council of Medical Research and University Grant Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukumaran Umesh-Kumar.

Additional information

An erratum to this article can be found at https://doi.org/10.1007/s00253-008-1586-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumaresan, N., Sanjay, K.R., Venkatesh, K.S. et al. Partially saturated canthaxanthin purified from Aspergillus carbonarius induces apoptosis in prostrate cancer cell line. Appl Microbiol Biotechnol 80, 467–473 (2008). https://doi.org/10.1007/s00253-008-1538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1538-7

Keywords

Navigation