Skip to main content
Log in

Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70°C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or l-phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Geueke B, Riebel B, Hummel W (2003) NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme and Microbial Technology 32:205–211

    Article  CAS  Google Scholar 

  • Ginson CM, Mallett TC, Claiborne AI, Caparon MG (2000) Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes. J Bacteriol 182:448–455

    Article  Google Scholar 

  • Herles C, Braune A, Blaut M (2002) Purification and characterization of an NADH oxidase from Eubacterium ramulus. Arch Microbiol 178:71–74

    Article  CAS  Google Scholar 

  • Higuchi M, Shimada M, Yamamoto Y, Hayashi T, Koga T, Kamio Y (1993) Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. J Gen Microbiol 139:2343–2351

    Article  CAS  Google Scholar 

  • Higuchi M, Shimada M, Matsumoto J, Yamamoto Y, Rhaman A, Kamio Y (1994) Molecular cloning and sequence analysis of the gene encoding the H2O2-forming NADH oxidase from Streptococcus mutans. Biosci Biotechnol Biochem 58:1603–1607

    Article  CAS  Google Scholar 

  • Hummel W, Riebel B (1996) Chiral alcohols by enantioselective enzymatic oxidation. Ann N Y Acad Sci 799:713–716

    Article  CAS  Google Scholar 

  • Hummel W, Riebel B (2003) Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis. Biotechnol Lett 25:51–54

    Article  CAS  Google Scholar 

  • Hummel W, Kuzu M, Geueke B (2003) An efficient and selective enzymatic oxidation system for the synthesis of enantiomerically pure d-tert-leucine. Organic Lett 5:3649–3650

    Article  CAS  Google Scholar 

  • Kawasaki S, Ishikura J, Chiba D, Nishino T, Niimura Y (2004) Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch Microbiol 181:324–330

    Article  CAS  Google Scholar 

  • Kengen SW, van der Oost J, de Vos WM (2003) Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur J Biochem 270:2885–2894

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Maeda K, Truscott K, Liu XL, Scopes RK (1992) A thermostable NADH oxidase from anaerobic extreme thermophiles. Biochem J 284:551–555

    Article  CAS  Google Scholar 

  • Masullo M, Raimo G, Dello Russo A, Bocchini V, Bannister JV (1996) Purification and characterization of NADH oxidase from the archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus. Biotechnol Appl Biochem 23:47–54

    CAS  PubMed  Google Scholar 

  • Matsumoto J, Higuchi M, Shimada M, Yamamoto Y, Kamio Y (1996) Molecular cloning and sequence analysis of the gene encoding the H2O-forming NADH oxidase from Streptococcus mutans. Biosci Biotechnol Biochem 60:39–43

    Article  CAS  Google Scholar 

  • Matsushita K, Otofuji A, Iwahashi M, Toyama H, Adachi O (2001) NADH dehydrogenase of Corynebacterium glutamicum. Purification of an NADH dehydrogenase II homolog able to oxidize NADPH. FEMS Microbiol Lett 204:271–276

    Article  CAS  Google Scholar 

  • Miyamoto K, Hirano J, Ohta H (2004) Efficient oxidation of alcohols by a 2-phenylethanol-degrading Brevibacterium sp. Biotechnol Lett 26:1385–1388

    Article  CAS  Google Scholar 

  • Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359

    CAS  PubMed  Google Scholar 

  • Odman P, Wellborn WB, Bommarius AS (2004) An enzymatic process to a-ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase. Tetrahedron Asymmetry 15:2933–2937

    Article  Google Scholar 

  • Park HJ, Reiser CO, Kondruweit S, Erdmann H, Schmid RD, Sprinzl M (1992) Purification and characterization of a NADH oxidase from the thermophile Thermus thermophilus HB8. Eur J Biochem 205:881–885

    Article  CAS  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Cofactor regeneration of NAD+ from NADH: novel water-forming NADH oxidase. Adv Synth Catal 344:1156–1168

    Article  CAS  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2003) Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH oxidase from Lactobacillus sanfranciscensis. Adv Synth Catal 345:707–712

    Article  CAS  Google Scholar 

  • Ross RP, Claiborne A (1992) Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J Mol Biol 227:658–671

    Article  CAS  Google Scholar 

  • Schmidt HL, Stocklein W, Danzer J, Kirch P, Limbach B (1986) Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem 156:149–155

    Article  CAS  Google Scholar 

  • Tamura Y, Ohkubo A, Iwai S, Wada Y, Shinoda T, Arai K, Mineki S, Iida M, Taguchi H (2002) Two forms of NAD-dependent d-mandelate dehydrogenase in Enterococcus faecalis IAM 10071. Appl Environ Microbiol 68:947–951

    Article  CAS  Google Scholar 

  • Toomey D, Mayhew SG (1998) Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system. Eur J Biochem 251:935–945

    Article  CAS  Google Scholar 

  • Yang X, Ma K (2005) Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch Microbiol 183:331–337

    Article  CAS  Google Scholar 

  • Yang X, Ma K (2007) Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 189:3312–3317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for the 21st century COE Program entitled “Understanding and Control of Life’s Function via Systems Biology”, and Global COE program entitled “Center of Human Metabolomic Systems Biology” Keio University. The analysis of N-terminal amino acid sequence of NOX was assisted by Prof. Midori MATHUMOTO (Keio University), Associate Prof. Hiroyuki KAWAHARA (Hokkaido University), Mr. Tomohiro HIROSE (Hokkaido University), and Mr. Akira MIYAO (Hokkaido University), to whom we would like to express our thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, Ji., Miyamoto, K. & Ohta, H. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl Microbiol Biotechnol 80, 71–78 (2008). https://doi.org/10.1007/s00253-008-1535-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1535-x

Keywords

Navigation