Skip to main content
Log in

Long serial analysis of gene expression for transcriptome profiling during the initiation of ligninolytic enzymes production in Phanerochaete chrysosporium

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To analyze the transcriptome profile during the initiation of manganese peroxidase (MnP) and lignin peroxidase (LiP) production in Phanerochaete chrysosporium, we constructed long serial analysis of gene expression (LongSAGE) libraries. A total of 13,666 tags (the number of cumulative counted tags) that included 6,945 unique tags (the number of distinct tags) were isolated from the day-3 culture, which just started the enzymes production and was 24 h after veratryl alcohol addition and oxygen-purge into the culture (day-2 culture). A total of 12,402 tags that included 6,396 unique tags were isolated from the day-2 culture, in which the activity of enzymes is not detected. The comparison of the two libraries suggested that 38 genes showed significant (p ≤ 0.01) fourfold or greater upregulation; this included the MnP gene (mnp2, mnp3) and LiP H8 gene. On the other hand, 43 genes showed significant (p ≤ 0.01) fourfold or greater downregulation. This LongSAGE analysis found many new candidate genes regulating the enzymes production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  Google Scholar 

  • Banfield MJ, Brady RL (2000) The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J Mol Biol 297:1159–1170

    Article  CAS  Google Scholar 

  • Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130

    Article  CAS  Google Scholar 

  • Bursall HH, Eslyn WE (1974) A new Phanerochaete with a chrysosporium imperfect state. Mycotaxon 1:123–133

    Google Scholar 

  • Cancel AM, Orth AB, Tien M (1993) Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 59:2909–2913

    Article  CAS  Google Scholar 

  • Cohen R, Yarden O, Hadar Y (2002) Lignocellulose affects Mn2+ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol 68:3156–3158

    Article  CAS  Google Scholar 

  • Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278:13061–13068

    Article  CAS  Google Scholar 

  • Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466

    Article  CAS  Google Scholar 

  • Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  Google Scholar 

  • Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    Article  CAS  Google Scholar 

  • Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch Biochem Biophys 376:171–179

    Article  CAS  Google Scholar 

  • Gold MH, Glenn JK (1988) Manganese peroxidase from Phanerochaete chrysosporium. In: method in enzymology. Academic, New York, pp 258–270

    Google Scholar 

  • Hengst U, Albrecht H, Hess D, Monard D (2001) The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem 276:535–540

    Article  CAS  Google Scholar 

  • Hirota K, Nakamura H, Masutani H, Yodoi J (2002) Thioredoxin superfamily and thioredoxin-inducing agents. Ann N Y Acad Sci 957:189–199

    Article  CAS  Google Scholar 

  • Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci USA 103:1159–1164

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struck Biol 10:637–643

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Matsuzaki F, Wariishi H (2004) Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 324:387–393

    Article  CAS  Google Scholar 

  • Pylouster J, Senamaud-Beaufort C, Saison-Behmoaras TE (2005) WEBSAGE: a web tool for visual analysis of differentially expressed human SAGE tags. Nucleic Acids Res 33:693–695

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  • Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    Article  CAS  Google Scholar 

  • Stewart P, Gaskell J, Cullen D (2000) A homokaryotic derivative of a Phanerochaete chrysosporium strain and its use in genomic analysis of repetitive elements. Appl Environ Microbiol 66:1629–1633

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Method in enzymology. Academic, New York, pp 238–249

    Google Scholar 

  • Vallee BS, Coadou G, Labbe H, Sy D, Vovelle F, Schoentgen F (2003) Peptides corresponding to the N- and C-terminal parts of PEBP are well-structured in solution: new insights into their possible interaction with partners in vivo. J Pept Res 61:47–57

    Article  CAS  Google Scholar 

  • Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D (2006) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  Google Scholar 

  • Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopath 32:413–427

    Article  CAS  Google Scholar 

  • Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14:149–153

    Article  CAS  Google Scholar 

  • Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM (2001) Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 21:7207–7217

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. J. Gaskell and Dr. D. Cullen for providing P. chrysosporium strain RP78. The sequence data used for annotation were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/. This work was supported in part by Grants-in-Aid for Young Scientist (B) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to T.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Irie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, M., Kureha, O., Mori, M. et al. Long serial analysis of gene expression for transcriptome profiling during the initiation of ligninolytic enzymes production in Phanerochaete chrysosporium . Appl Microbiol Biotechnol 75, 609–618 (2007). https://doi.org/10.1007/s00253-007-0850-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0850-y

Keywords

Navigation