Skip to main content

Advertisement

Log in

Anticoagulant heparan sulfate: structural specificity and biosynthesis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heparan sulfate (HS) is present on the surface of endothelial and surrounding tissues in large quantities. It plays important roles in regulating numerous functions of the blood vessel wall, including blood coagulation, inflammation response, and cell differentiation. HS is a highly sulfated polysaccharide containing glucosamine and glucuronic/iduronic acid repeating disaccharide units. The unique sulfated saccharide sequences of HS determine its specific functions. Heparin, an analog of HS, is the most commonly used anticoagulant drug. Because of its wide range of biological functions, HS has become an interesting molecule to biochemists, medicinal chemists, and developmental biologists. In this review, we summarize recent progress toward understanding the interaction between HS and blood-coagulating factors, the biosynthesis of anticoagulant HS and the mechanism of action of HS biosynthetic enzymes. Furthermore, knowledge of the biosynthesis of HS facilitates the development of novel enzymatic approaches to synthesize HS from bacterial capsular polysaccharides and to produce polysaccharide end products with high specificity for the biological target. These advancements provide the foundation for the development of polysaccharide-based therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikawa J-i, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfates/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase: structure and activity of the fourth member, NDST4. J Biol Chem 276:5876–5882

    CAS  PubMed  Google Scholar 

  • Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279:12346–12354

    CAS  PubMed  Google Scholar 

  • Atha DH, Lormeau J-C, Petitou M, Rosenberg RD, Choay J (1985) Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry 24:6723–6729

    CAS  PubMed  Google Scholar 

  • Avci FY, Karst NA, Linhardt RJ (2003) Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties. Curr Pharm Des 9:2323–2335

    CAS  PubMed  Google Scholar 

  • Balagurunathan K, Beeler DL, Lech M, Wu ZL, Rosenberg RD (2003a) Chemoenzymatic synthesis of classical and non-classical anticoagulant heparan sulfate polysaccharides. J Biol Chem 278:52613–52621

    Google Scholar 

  • Balagurunathan K, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003b) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21:1343–1346

    Google Scholar 

  • Becker RC (2004) Optimizing heparin compounds: a working construct for future antithrombotic drug development. J Thromb Thrombolysis 18:55–58

    CAS  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    CAS  PubMed  Google Scholar 

  • Burkart MD, Izumi M, Chapman E, Lin C, Wong C (2000) Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. J Org Chem 65:5565–5574

    CAS  PubMed  Google Scholar 

  • Chen J, Duncan MB, Carrick K, Pope M, Liu J (2003) Biosynthesis of 3-O-sulfated heparan sulfate: unique substrate specificity of heparan sulfate 3-O-sulfotransferase isoform 5. Glycobiology 13:785–794

    CAS  PubMed  Google Scholar 

  • Chen J, Avci FY, Muñoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J (2005) Enzymatically redesigning of biologically active heparan sulfate. J Biol Chem 280:42817–42825

    CAS  PubMed  Google Scholar 

  • Coombe DR, Kett WC (2005) Heparan sulfate-protein interactions: therapeutic potential through structure–function insights. Cell Mol Life Sci 62:410–424

    CAS  PubMed  Google Scholar 

  • Das S, Mallet J, Esnault J, Driguez P, Duchaussoy P, Sizun P, Herault J, Herbert J, Petitou M, Sinay P (2001) Synthesis of conformationally locked L-iduronic acid derivatives: direct evidence for a critical role of the skew-boat 2S0 conformer in the activation of antithrombin by heparin. Chemistry 7:4821–4834

    CAS  PubMed  Google Scholar 

  • de Paz JL, Noti C, Seeberger PH (2006) Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc 128:2766–2767

    PubMed  Google Scholar 

  • Dementiev A, Petitou M, Herbert J-M, Gettins PG (2004) The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity. Nat Struct Biol 11:867–863

    CAS  Google Scholar 

  • Duncan MB, Chen J, Krise JP, Liu J (2004) The biosynthesis of anticoagulant heparan sulphate by the heparan sulphate 3-O-sulphotransferase isoform 5. Biochim Biophys Acta 1671:34–43

    CAS  PubMed  Google Scholar 

  • Edavettal SC, Lee KA, Negishi M, Linhardt RJ, Liu J, Pedersen LC (2004) Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1. J Biol Chem 279:25789–25797

    CAS  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    CAS  PubMed  Google Scholar 

  • Ferro V, Don R (2003) The development of the novel angiogenesis inhibitor PI-88 as an anticancer drug. Australas Biotechnol 13:38–39

    CAS  Google Scholar 

  • Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4803

    CAS  PubMed  Google Scholar 

  • Habuchi H, Habuchi O, Kimata K (1995) Purification and characterization of heparan sulfate 6-sulfotransferase from the culture medium of Chinese hamster ovary cells. J Biol Chem 270:4172

    CAS  PubMed  Google Scholar 

  • Habuchi H, Tanaka M, Habuchi O, Yoshida K, Suzuki H, Ban K, Kimata K (2000) The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem 275:2859–2868

    CAS  PubMed  Google Scholar 

  • Hacker U, Nybakken K, Perrimon N (2005) Heparan sulfate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    PubMed  Google Scholar 

  • HajMohammadi S, Enjyoji K, Princivalle M, Christi P, Lech M, Beeler DL, Rayburn H, Schwartz JJ, Barzegar S, de Agostini AI, Post MJ, Rosenberg RD, Shworak NW (2003) Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J Clin Invest 111:989–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert JM, Herault JP, Bernat A, Savi P, Schaeffer P, Driguez PA, Duchaussov P, Petitou M (2001) SR 123781A, a synthetic heparin mimetic. Thromb Haemost 85:852–860

    CAS  PubMed  Google Scholar 

  • Hirsh J, O’Donnell M, Weitz JI (2005) New anticoagulants. Blood 105:453–463

    CAS  PubMed  Google Scholar 

  • Ishihara M, Guo Y, Wei Z, Yang Z, Swiedler SJ, Orellana A, Hirschberg CB (1993) Regulation of biosynthesis of the basic fibroblast growth factor binding domains of heparan sulfate by heparan sulfate-N-deacetylase/N-sulfotransferase expression. J Biol Chem 268:20091–20095

    CAS  PubMed  Google Scholar 

  • Jin L, Abrahams P, Skinner R, Petitou M, Pike RN, Carrell RW (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 94:14683–14688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelton JG (2002) Heparin-induced thrombocytopenia: an overview. Blood Rev 16:77–80

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Habuchi H, Habuchi O, Saito M, Kimata K (1996) Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells. J Biol Chem 271:7645–7653

    CAS  PubMed  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Google Scholar 

  • Kuberan B, Beeler DL, Lawrence R, Lech M, Rosenberg R (2003) Rapid two-step synthesis of mitrin from heparosan: a replacement for heparin. J Am Chem Soc 125:12424–12425

    CAS  PubMed  Google Scholar 

  • Lee JC, Lu XA, Kulkarni SS, Wen YS, Hung SC (2004) Synthesis of heparin oligosaccharides. J Am Chem Soc 126:476–477

    CAS  PubMed  Google Scholar 

  • Li W, Johnson DJ, Esmon CT, Huntington JA (2004) Structure of the antithrombin–thrombin–heparin ternary complex reveals the anti-thrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862

    CAS  PubMed  Google Scholar 

  • Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273:26265–26268

    CAS  PubMed  Google Scholar 

  • Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273:24979–24982

    CAS  PubMed  Google Scholar 

  • Lindahl U, Li J, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emies J, Roberts I, Taylor C, Oreste P et al (2005) Generation of “neoheparin” from E. Coli K5 capsular polysaccharide. J Med Chem 48:349–352

    CAS  PubMed  Google Scholar 

  • Liu J, Rosenberg RD (2002) Heparan sulfate D-glucosaminyl 3-O-sulfotransferase. In: N Taniguchi, M Fukuda (eds) Handbook of glycosyltransferases and their related genes. Springer, Berlin Heidelberg New York, pp 475–483

    Google Scholar 

  • Liu J, Thorp SC (2002) Heparan sulfate and the roles in assisting viral infections. Med Res Rev 22:1–25

    PubMed  Google Scholar 

  • Liu J, Shworak NW, Fritze LMS, Edelberg JM, Rosenberg RD (1996) Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem 271:27072–27082

    CAS  PubMed  Google Scholar 

  • Liu J, Shworak NW, Sinaÿ P, Schwartz JJ, Zhang L, Fritze LMS, Rosenberg RD (1999) Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J Biol Chem 274:5185–5192

    CAS  PubMed  Google Scholar 

  • McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F (1998) The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 19:158–161

    CAS  PubMed  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524

    CAS  PubMed  Google Scholar 

  • Mikhailov D, Mayo KH, Pervin A, Linhardt RJ (1996) 13C-NMR relaxation study of heparin–disaccharide interactions with tripeptide GRG and GKG. Biochem J 315:447–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon A, Edavettal SC, Krahn JX, Munoz EM, Negishi M, Linhardt RJ, Liu J, Pedersen LC (2004) Structural analysis of the sulfotransferase (3-OST-3) involved in the biosynthesis of an entry receptor of herpes simplex virus 1. J Biol Chem 279:45185–45193

    CAS  PubMed  Google Scholar 

  • Mulloy B, Forster M (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147–1156

    CAS  PubMed  Google Scholar 

  • Nyberg K, Ekblad M, Bergstrom T, Freeman C, Parish CR, Ferro V, Trybala E (2004) The low molecular weight heparan sulfate-mimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res 63:15–24

    CAS  PubMed  Google Scholar 

  • Oosta GM, Gardner WT, Beeler DL, Rosenberg R (1981) Multiple functional domains of the heparin molecule. Proc Natl Acad Sci USA 78:829–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petitou M, van Boeckel CAA (1992) Chemical synthesis of heparin fragments and analogues. Fortschr Chem Org Naturst 60:143–210

    CAS  PubMed  Google Scholar 

  • Petitou M, van Boeckel CAA (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed 43:3118–3133

    CAS  Google Scholar 

  • Petitou M, Herault L-P, Bernat A, Driguez P-A, Duchaussoy P, Lormeau J-C, Herbert J-M (1999) Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398:417–422

    CAS  PubMed  Google Scholar 

  • Raman R, Sasisekharan V, Sasisekharan R (2005) Structural insights into biological roles of protein–glycosaminoglycan interactions. Chem Biol 12:267–277

    CAS  PubMed  Google Scholar 

  • Rosenberg RD, Showrak NW, Liu J, Schwartz JJ, Zhang L (1997) Heparan sulfate proteoglycans of the cardiovascular system: specific structures emerge but how is synthesis regulated? J Clin Invest 99:2062–2070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson RD, Yang Y, Suva LJ, Kelly T (2004) Heparan sulfate proteglycans and heparanase—partners in osteolytic tumor growth and metastasis. Matrix Biol 23:341–352

    CAS  PubMed  Google Scholar 

  • Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparin-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528

    CAS  PubMed  Google Scholar 

  • Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22

    CAS  PubMed  Google Scholar 

  • Shworak NW, Liu J, Fritze LMS, Schwartz JJ, Zhang L, Logeart D, Rosenberg RD (1997) Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem 272:28008–28019

    CAS  PubMed  Google Scholar 

  • Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, Jenkins NA, Rosenberg RD (1999) Diversity of the extensive heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) multigene family. J Biol Chem 274:5170–5184

    CAS  PubMed  Google Scholar 

  • Smeds E, Habuchi H, Do A-T, Hjertson E, Grundberg H, Kimata K, Lindahl U, Kusche-Gullberg M (2003) Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulfotransferases. Biochem J 372(Pt 2):371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22

    CAS  PubMed  Google Scholar 

  • Xia G, Chen J, Tiwari V, Ju W, Li J-P, Malmström A, Shukla D, Liu J (2002) Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem 277:37912–37919

    CAS  PubMed  Google Scholar 

  • Xu D, Tiwari V, Xia G, Clement C, Shukla D, Liu J (2005) Characterization of heparan sulfate 3-O-sulfotransferase isoform 6 and its role in assisting the entry of herpes simplex virus, type 1. Biochem J 385:451–459

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A.F. Moon and Dr. L.G. Pedersen for critical reading of the manuscript. The Liu lab is supported by a grant from the National Institutes of Health (AI050050). This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Pedersen, L.C. Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 74, 263–272 (2007). https://doi.org/10.1007/s00253-006-0722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0722-x

Keywords

Navigation