Skip to main content
Log in

Botryococcus braunii: a rich source for hydrocarbons and related ether lipids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper presents a review on Botryococcus braunii, a cosmopolitan green colonial microalga characterised by a considerable production of lipids, notably hydrocarbons. Strains like wild populations of this alga differ in the type of hydrocarbons they synthesise and accumulate: (1) n-alkadienes and trienes, (2) triterpenoid botryococcenes and methylated squalenes, or (3) a tetraterpenoid, lycopadiene. In addition to hydrocarbons and some classic lipids, these algae produce numerous series of characteristic ether lipids closely related to hydrocarbons. This review covers the algal biodiversity, the chemical structures and biosynthesis of hydrocarbons and ether lipids and the biotechnological studies related to hydrocarbon production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aaronson S, Berner T, Gold K, Kushner L, Patni NJ, Repak A, Rubin D (1983) Some observations on the green planktonic alga, Botryococcus braunii and its bloom form. J Plankton Res 5:693–700

    Google Scholar 

  • Achitouv E, Metzger P, Rager M-N, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65:3159–3165

    CAS  PubMed  Google Scholar 

  • An J-Y, Sim S-J, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Baillez C, Largeau C, Casadevall E (1985) Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl Microbiol Biotechnol 23:99–105

    Article  Google Scholar 

  • Baillez C, Largeau C, Berkaloff C, Casadevall E (1986) Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl Microbiol Biotechnol 23:361–366

    Google Scholar 

  • Baillez C, Largeau C, Casadevall E, Yang LW, Berkaloff C (1988) Photosynthesis, growth and hydrocarbon production of Botryococcus braunii immobilized by entrapment and adsorption in polyurethane foams. Appl Microbiol Biotechnol 29:141–147

    Article  Google Scholar 

  • Brenckmann F, Largeau C, Casadevall E, Berkaloff C (1985a) Influence de la nutrition azotée sur la croissance et la production d’hydrocarbures de l’algue Botryococcus braunii. In: Palz W, Coombs J, Hall DO (eds) Energy from biomass. Elsevier, London, pp 717–721

    Google Scholar 

  • Brenckmann F, Largeau C, Casadevall E, Core C, Berkaloff C (1985b) Influence of light intensity on hydrocarbon and total biomass production of Botryococcus braunii. Relationships with photosynthetic characteristics. In: Palz W, Coombs J, Hall DO (eds) Energy from biomass. Elsevier, London, pp 722–726

    Google Scholar 

  • Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547

    Article  CAS  Google Scholar 

  • Casadevall E, Metzger P, Puech MP (1984) Biosynthesis of triterpenoid hydrocarbons in the alga Botryococcus braunii. Tetrahedron Lett 25:4123–4126

    Article  CAS  Google Scholar 

  • Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell structure, and phosphate nutrition. Biotechnol Bioeng 27:286–295

    CAS  Google Scholar 

  • Cepák V, Lukavsky J (1994) The effect of high irradiances on growth, biosynthetic activities and the ultrastructure of the green alga Botryococcus braunii strain Droop 1950/807-1. Arch Hydrobiol Suppl 101:1–17

    Google Scholar 

  • ChanYong T-P, Largeau C, Casadevall E (1986) Biosynthesis of non-isoprenoid hydrocarbons by the microalga Botryococcus braunii: evidence for an elongation decarboxylation mechanism; activation of decarboxylation. Nouv J Chim 10:701–707

    CAS  Google Scholar 

  • Chirac C, Casadevall E, Largeau C, Metzger P (1985) Bacterial influence upon growth and hydrocarbon production of the green alga Botryococcus braunii. J Phycol 21:380–387

    CAS  Google Scholar 

  • Cox RE, Burlingame AL, Wilson DM, Eglinton G, Maxwell JR (1973) Botryococcene—a tetramethylated acyclic triterpenoid of algal origin. JCS Chem Commun 12:284–285

    Article  Google Scholar 

  • David M, Metzger P, Casadevall E (1988) Two cyclobotryococcenes from the B race of the green alga Botryococcus braunii. Phytochemistry 27:2863–2867

    Article  CAS  Google Scholar 

  • Dennis MW, Kolattukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys 287:268–275

    Article  CAS  PubMed  Google Scholar 

  • Dennis M, Kolattukudy PE (1992) A cobalt-porphirin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci USA 89:5306–5310

    CAS  PubMed  Google Scholar 

  • Duvold T, Cali P, Bravo JM, Rohmer M (1997) Incorporation of 2-C-methyl-d-erythritol, a putative isoprenoid precursor in the mevalonate-independent pathway, into ubiquinone and menaquinone of Escherichia coli. Tetrahedron Lett 35:6181–6184

    Article  Google Scholar 

  • Frenz J, Largeau C, Casadevall E (1989a) Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microb Technol 11:717–724

    Article  CAS  Google Scholar 

  • Frenz J, Largeau C, Casadevall E, Kollerup F, Daugulis AJ (1989b) Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Biotechnol Bioeng 34:755–762

    CAS  Google Scholar 

  • Galbraith MN, Hillen LW, Wake LV (1983) Darwinene: a branched hydrocarbon from a green form of Botryococcus braunii. Phytochemistry 22:1441–1443; errata (1983) Phytochemistry 22:2889

    Article  Google Scholar 

  • Gudin C, Chaumont D (1981) For a solar biotechnology based on microalgae. In: Chartier P, Palz W (eds) Energy from biomass, serie E, vol 1. Reidel, Dordrecht, pp 81–84

    Google Scholar 

  • Gudin C, Chaumont D (1984) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass for methane production and specific exocellular biomass. In: Palz W, Pirrwitz D (eds) Energy from biomass, serie E, vol 5. Reidel, Dordrecht, pp 184–193

    Google Scholar 

  • Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred lake, Mt. Kenya. Geochim Cosmochim 63:1383–1404

    Article  CAS  Google Scholar 

  • Huang Z, Poulter CD (1988) Braunicene. Absolute stereochemistry of the cyclohexane ring. J Org Chem 53:4089–4094

    CAS  Google Scholar 

  • Huang Z, Poulter CD (1989a) Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:1467–1470

    Article  CAS  Google Scholar 

  • Huang Z, Poulter CD (1989b) Stereochemical studies of botryococcene biosynthesis: analogies between 1′-1 and 1′-3 condensations in isoprenoid pathway. J Am Chem Soc 111:2713–2715

    CAS  Google Scholar 

  • Huszar VLM, Reynolds CS (1997) Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Bata, Parà, Brazil): responses to gradual environmental change. Hydrobiologia 346:169–181

    Article  Google Scholar 

  • Inoue H, Korenaga T, Sagami H, Koyama T, Sugiyama H, Ogura K (1993) Formation of farnesal and 3-hydroxy-2,3-dihydrofarnesal from farnesol by protoplasts of Botryococcus braunii. Biochem Biophys Res Commun 196:1401–1405

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Korenaga T, Sagami H, Koyama T, Ogura K (1994a) Phosphorylation of farnesol by a cell-free system from Botryococcus braunii. Biochem Biophys Res Commun 200:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Dote Y, Sawayama S, Minowa T, Ogi T, Yokoyama S-Y (1994b) Analysis of oil derived from liquefaction of Botryococcus braunii. Biomass Bioenergy 6:269–274

    Article  CAS  Google Scholar 

  • Inoue H, Sagami H, Koyama T, Ogura K (1995) Properties of farnesol phosphokinase of Botryococcus braunii. Phytochemistry 40:377–381

    Article  CAS  Google Scholar 

  • Jarstfer MB, Zhang D-L, Poulter CD (2002) Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH. J Am Chem Soc 124:8834–8845

    Article  CAS  PubMed  Google Scholar 

  • Knights BA, Brown AC, Conway E, Middleditch BS (1970) Hydrocarbons from the green form of the freshwater alga Botryococcus braunii. Phytochemistry 9:1317–1324

    Article  CAS  Google Scholar 

  • Kojima E, Zhang K (1999) Growth and hydrocarbons of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87:811–815

    Article  CAS  Google Scholar 

  • Komárek J, Marvan P (1992) Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae). Arch Protistendk 141:65–100

    Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • Lee SJ, Kim S-B, Kwon G-S, Yoon B-B, Oh H-M (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27:14–18

    Article  Google Scholar 

  • Mangold HK, Paltauf F (1983) Ether lipids, biochemical and biomedical aspects. Academic Press, New York

    Google Scholar 

  • McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature 320:57–59

    Article  CAS  Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  • Metzger P (1993) n-Heptacosatrienes and tetraenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 33:1125–1128

    Article  CAS  Google Scholar 

  • Metzger P (1994) Phenolic ether lipids with an n-alkenylresorcinol moiety from a Bolivian strain of Botryococcus braunii (A race). Phytochemistry 36:195–212

    Article  CAS  Google Scholar 

  • Metzger P (1999) Two terpenoid diepoxides from the green microalga Botryococcus braunii: their biomimetic conversion to tetrahydrofurans and tetrahydropyrans. Tetrahedron 55:167–176

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1983) Structure de trois nouveaux botryococcènes synthétisés par une souche de Botryococcus brauniii cultivée en laboratoire. Tetrahedron Lett 24:4013–4016

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1991) Botryococcoid ethers, ether lipids from Botryococcus braunii. Phytochemistry 30:1439–1444

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1992) Ether lipids from Botryococcus braunii and their biosynthesis. Phytochemistry 31:2341–2349

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260

    Google Scholar 

  • Metzger P, Largeau C (2002) Natural polyacetals. In: Steinbüchel A (ed) Biopolymers, vol. 9. Wiley-VCH, Weinheim, pp 113–127

    Google Scholar 

  • Metzger P, Rager M-N (2002) Lycopanerols H, two high molecular weight ether lipids from Botryococcus braunii comprising an α-tocopherol unit. Tetrahedron Lett 43:2377–2380

    Article  CAS  Google Scholar 

  • Metzger P, Berkaloff C, Couté A, Casadevall E (1985a) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    CAS  Google Scholar 

  • Metzger P, Casadevall E, Pouet M-J, Pouet Y (1985b) Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002

    Article  CAS  Google Scholar 

  • Metzger P, Templier J, Largeau C, Casadevall E (1986) An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry 25:1869–1872

    Article  CAS  Google Scholar 

  • Metzger P, David M, Casadevall E (1987) Biosynthesis of triterpenoid hydrocarbons in the B race of the green alga Botryococcus brauniii. Sites of production and nature of the methylating agent. Phytochemistry 26:129–134

    Article  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Couté A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C, Casadevall E (1991) Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. Prog Chem Org Nat Prod 57:1–70

    Google Scholar 

  • Metzger P, Pouet Y, Summons R (1997) Chemotaxonomic evidence for the similarity between Botryococcus braunii L race and Botryococcus neglectus. Phytochemistry 44:1071–1075

    Article  CAS  Google Scholar 

  • Metzger P, Rager M-N, Largeau C (2002) Botryolins A and B, two tetramethylsqualene triethers from the green microalga Botryococcus braunii. Phytochemistry 59:839–843

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Rager M-N, Sellier N, Largeau C (2003) Lycopanerols I-L: four new tetraterpenoid ethers from the green microalga Botryococcus braunii. J Nat Prod 66:772–778

    CAS  PubMed  Google Scholar 

  • Moldowan JM, Seifert WK (1980) First discovery of botryococcane in petroleum. JCS Chem Commun 19:912–914

    Article  Google Scholar 

  • Ohmori M, Wolf FR, Bassham JA (1984) Botryococcus braunii carbon/nitrogen metabolism as affected by ammonia addition. Arch Microbiol 140:101–106

    Article  CAS  Google Scholar 

  • Okada S, Murakami M, Yamaguchi K (1995) Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J Appl Phycol 7:555–559

    CAS  Google Scholar 

  • Okada S, Murakami M, Yamaguchi K (1997a) Characterization of hydrocarbons from the Yayoi strain of the green microalga Botryococcus braunii. Phytochem Anal 8:198–203

    Article  CAS  Google Scholar 

  • Okada S, Tonegawa I, Matsuda H, Murakami M, Yamaguchi K (1997b) Braunixanthins 1 and 2, new carotenoids from the green micoalga Botryococcus braunii. Tetrahedron 53:11307–11316

    Article  CAS  Google Scholar 

  • Okada S, Devarenne TP, Chapell J (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Devarenne TP, Murakami M, Abe H, Chappell J (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 422:110–118

    Article  CAS  PubMed  Google Scholar 

  • Pedroni P, Davison J, Beckert H, Bergman P, Benemann (2001) A proposal to establish an international network of CO2 and greenhouse gas abatement with microalgae. J Energy Environ Res 1:136–150

    Google Scholar 

  • Plain N, Largeau C, Derenne S, Couté A (1993) Variabilité morphologique de Botryococcus braunii (Chlorococcales, Chlorophyta): corrélations avec les conditions de croissance et la teneur en lipides. Phycologia 32:259–265

    Google Scholar 

  • Poulter CD (1990) Biosynthesis of non-head-to-tail terpenes. Formation of 1′-1 and 1′-3 linkages. Acc Chem Res 23:70–77

    CAS  Google Scholar 

  • Rager M-N, Metzger P (2000) Six novel tetraterpenoid ethers, lycopanerols B-G, and some other constituents from the green microalga Botryococcus braunii. Phytochemistry 54:427–437

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) An overview of microbial lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London pp 3–22

    Google Scholar 

  • Sato T, Usui S, Nakatsuka N, Sakurai S, Tsuchiya Y, Kondo Y, Hirabayashi S (2002) Innovation of novel photobioreactor for microalgae and proposal of its usage for CO2 fixation. (Proc 1st Congr Int Soc Appl Phycol) Int Conf Appl Algol 9:119–120

  • Sato Y, Ito Y, Okada S, Murakami M, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Lett 44:7035–7037

    Article  CAS  Google Scholar 

  • Sawayama S, Inoue S, Yokoyama S (1994) Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 41:729–731

    CAS  Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama S-H (1995) CO2 fixation and oil production through microalga. Energy Convers Manage 36:729–731

    Article  CAS  Google Scholar 

  • Sawayama S, Minowa T, Yokoyama S-Y (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39

    Article  CAS  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side chains of chlorophylls and plastoquinone) via a novel/pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliqus. Biochem J 316:73–80

    CAS  PubMed  Google Scholar 

  • Senousy HH (2003) A molecular taxonomic and morphological study of the green alga genus Botryococcus. PhD thesis, University of Newcastle, Newcastle upon Tyne

  • Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423

    CAS  Google Scholar 

  • Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and cruce oils. Org Geochem 33:99–109

    Article  CAS  Google Scholar 

  • Templier J, Largeau C, Casadevall E (1984) Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry 23:1017–1028

    Article  CAS  Google Scholar 

  • Templier J, Largeau C, Casadevall E (1987) Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry 26:377–383

    Article  CAS  Google Scholar 

  • Townsend SA (2001) Perennial domination of phytoplankton by Botryococcus and Peridinium in a discontinuously polymictic reservoir (tropical Australia). Arch Hydrobiol 151:529–548

    Google Scholar 

  • Villarreal-Rosales E, Metzger P, Casadevall E (1992) Ether lipid production in relation to growth in Botryococcus braunii. Phytochemistry 31:3021–3027

    Article  CAS  Google Scholar 

  • Volova TG, Kalacheva GS, Zhila NO (2003) Specificity of lipid composition in two Botryococcus strains, the producers of liquid hydrocarbons. Russ J Plant Physiol 50:627–633

    Article  CAS  Google Scholar 

  • Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol Bioeng 22:1637–1656

    Google Scholar 

  • Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwater Res 32:353–367

    CAS  Google Scholar 

  • Wang J, Yang S, Cong W, Cai Z (2003) Effect of nutrient conditions on the growth of Botryococcus braunii. Chin J Process Eng 3:141–145

    Google Scholar 

  • White JD, Somers TC, Reddy GN (1986) Absolute configuration of (−) botryococcene. J Am Chem Soc 108:5352–5353

    CAS  Google Scholar 

  • White JD, Somers TC, Reddy GN (1992) Degradation and absolute configurational assignment to C34 botryococcene. J Org Chem 57:4991–4998

    CAS  Google Scholar 

  • Wolf FR, Nemethy EK, Blanding JH, Bassham JA (1985a) Biosynthesis of unusual acyclic isoprenoids in the alga Botryococcus braunii. Phytochemistry 24:733–737

    Article  CAS  Google Scholar 

  • Wolf FR, Nonomura AM, Bassham JA (1985b) Growth and branched hydrocarbon production in a strain of Botryococcus braunii (Chlorophyta). J Phycol 21:388–396

    CAS  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004a) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004b) Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzyme Microb Technol 35:46–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Metzger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, P., Largeau, C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66, 486–496 (2005). https://doi.org/10.1007/s00253-004-1779-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1779-z

Keywords

Navigation