Skip to main content
Log in

Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genome rearrangement is an increasingly important technique to facilitate the understanding of genome functions. A Cre/loxP-mediated deletion system for large-scale genome rearrangements in Corynebacterium glutamicum was developed. By comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes, distinct 14.5-kb and 56-kb regions not essential for cell survival were identified and targeted for deletion. By homologous recombination, loxP sites were integrated at each end of the target region. Deletions between the two chromosomal loxP sites in the presence of Cre recombinase were highly efficient. Accurate deletion was observed in all 96 Cre-expressing strains tested. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of 11 and 58 predicted ORF(s), respectively, upon the deletion of the14.5-kb and 56-kb regions, the cells still exhibited normal growth under standard laboratory conditions. Based on the precision of its deletion, the Cre/loxP system provides a new, efficient genome rearrangement technique for studying C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  CAS  PubMed  Google Scholar 

  • Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P (2002) Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 68:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Gopaul DN, Guo F, Duyne GDV (1998) Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17:4175–4187

    Article  CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Itaya M, Tanaka T (1997) Experimental surgery to create subgenomes of Bacillus subtilis 168. Proc Natl Acad Sci 94:5378–5382

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kolisnychenko V, Plunkett G IIIrd, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Cummings, London, pp 115–146

    Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified β-glucosidase phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiol 149:1569–1580

    Article  CAS  Google Scholar 

  • Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204

    CAS  PubMed  Google Scholar 

  • Kurusu, Y, Kainuma M, Inui M, Satoh Y, Yukawa H (1990) Electroporation-transformation system for Coryneform bacteria by auxotrophic complementation. Aglic Biol Chem 54:443–447

    CAS  Google Scholar 

  • Liebl W (1991) The genus Corynebacterium-nonmedical. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, II. Springer-Verlag, Berlin, Heidelberg, New York, pp 1157–1171

    Google Scholar 

  • Malumbres M, Mateos LM, Martin JF (1995) Microorganisms for amino acid production: Escherichia coli and corynebacteria. In: Hui YH, Kachatourians GG (eds) Food biotechnology microorganisms, vol 2. VCH, New York, pp 423–469

    Google Scholar 

  • Murphy E, Huwyler L, do Carmo de Freire Bastos M (1985) Transposon Tn554 complete nucleotide sequence and isolation of transposition-defective and antibiotic sensitive mutants. EMBO J 4:3357–3365

    CAS  PubMed  Google Scholar 

  • Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Inui M, Kos PB, Vertès AA, Yukawa H (2003) Vector for the genetic engineering of Corynebacteria. In: Saha BC (ed) Fermentation biotechnology, ACS symposium series, vol 862. American Chemical Society, Washington DC, pp 175–191

    Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75

    Article  CAS  PubMed  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  CAS  PubMed  Google Scholar 

  • Qin M, Bayley C, Stockton T, Ow DW (1994) Cre Recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci 91:1706–1710

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Terasawa M, Inui M, Goto M, Shikata K, Imanari M, Yukawa H (1990) Living cell reaction process for l-isoleucine and l-valine production. J Ind Microbiol 5:289–294

    CAS  Google Scholar 

  • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185

    Article  CAS  PubMed  Google Scholar 

  • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994a) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746

    CAS  PubMed  Google Scholar 

  • Vertes AA, Asai Y, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994b) Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245:397–405

    CAS  PubMed  Google Scholar 

  • Yamagata H, Terasawa M, Yukawa H (1994) A novel industrial process for l-aspartic acid production using an ultrafiltration-membrane. Catalysis Today 22:621–627

    Article  CAS  Google Scholar 

  • Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Ken-ichi Yamamura for plasmid pBS185. This study was carried out as a part of The Project for Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers by Ministry of Economy, Trade & Industry (METI), and entrusted by New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, N., Tsuge, Y., Inui, M. et al. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67, 225–233 (2005). https://doi.org/10.1007/s00253-004-1772-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1772-6

Keywords

Navigation