Skip to main content
Log in

Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although yeasts are known to be able to incorporate a wide variety of exogenous sterols under strict anaerobiosis, no data are available on the assimilation of grapevine phytosterols under enological conditions and the eventual impact on fermentation kinetics. We used therefore a mixture of pure phytosterols, in a proportion representative of the different grape skins phytosterols, to supplement a synthetic fermentation medium simulating a grape must. Under anaerobiosis, normal biomass formation was achieved with 5 mg phytosterols l−1. Similar results were obtained in comparison with the observed maximal fermentation rates. These results clearly indicated that grape phytosterols may efficiently act as a substitute for ergosterol in the yeast membrane for promoting yeast growth and initial fermentative activity. Analysis of total yeast sterols indicated that phytosterols are accumulated without further modification, mainly in their esterified form. However, all the fermentations performed with synthetic media supplemented with phytosterols led to stuck fermentations, linked to a correlative strong decrease in cell viability during the stationary phase. Therefore, grape phytosterols are easily incorporated by yeast cells under enological conditions for promoting initial growth and fermentative activity, but rapidly perturb the yeast membrane properties by being the predominant sterols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreasen AA, Stier TJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Comp Physiol 41:23–36

    CAS  Google Scholar 

  • Andreasen AA, Stier TJB (1954) Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Comp Physiol 43:271–281

    CAS  Google Scholar 

  • Bely M, Sablayrolles JM, Barre PO (1990) Description of alcoholic fermentation: its variability and significance. Am J Enol Vitic 40:319–324

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Bourot S, Karst F (1995) Isolation and characterisation of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. Gene 165:97–102

    Article  CAS  PubMed  Google Scholar 

  • Dagna L, Gasparini G, Icardi ML, Sesia E (1982) Study of some components of the unsaponifiable fraction in the skins of grapes. Am J Enol Vitic 33:201–206

    CAS  Google Scholar 

  • Daum G, Paltauf F (1980) Triacylglycerols as fatty acid donors for membrane phospholipid biosynthesis in yeast. Monatsh Chem 111:355–363

    CAS  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  Google Scholar 

  • Fornairon-Bonnefond C, Demaretz V, Rosenfeld E, Salmon JM (2002) Oxygen addition and sterol synthesis in Saccharomyces cerevisiae during enological fermentation. J Biosci Bioeng 93:176–182

    Article  CAS  Google Scholar 

  • Higgins PA, Peng AC (1976) Lipid composition of Concord grapes. Am J Enol Vitic 27:32–35

    CAS  Google Scholar 

  • Houtman AC, Marais J, Plessis CS du (1980) Factors affecting the reproducibility of fermentation of grape juice and of the aroma composition of wines. I. Grape maturity sugar inoculum concentration aeration juice turbidity and ergosterol. Vitis 19:37–54

    CAS  Google Scholar 

  • Ingledew WM, Magnus CA, Sosulski FW (1987) Influence of oxygen on proline utilization during the wine fermentation. Am J Enol Vitic 38:246–248

    CAS  Google Scholar 

  • Jahnke L, Klein HP (1983) Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 155:488–492

    CAS  PubMed  Google Scholar 

  • Jollow D, Kellerman GM, Linnane AW (1968) The biogenesis of mitochondria. III. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J Cell Biol 37:221–230

    CAS  PubMed  Google Scholar 

  • King LM, Schisler DO, Ruocco JJ (1981) Epifluorescent method for detection of nonviable yeast. Am Soc Brew Chem 39:52–54

    CAS  Google Scholar 

  • Le Fur Y, Hory C, Bard MH, Olsson A (1994) Evolution of phytosterols in Chardonnay grape berry skins during last stages of ripening. Vitis 33:127–131

    Google Scholar 

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428

    CAS  PubMed  Google Scholar 

  • Leber R, Zenzschrottner R, Fuchsbichler S, Puhringer B, Turnowsky F (2001) A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae. Eur. J Biochem 268:914–924

    Article  CAS  Google Scholar 

  • Lorenz RT, Rodriguez RJ, Lewis TA, Parks LW (1986) Characteristics of sterol uptake in Saccharomyces cerevisiae. J Bacteriol 167:981–985

    CAS  PubMed  Google Scholar 

  • Mauricio JC, Arroyo M, Millan MC, Ortega JM (1990) Relationship between the phospholipid and sterol contents in Saccharomyces cerevisiae and Torulaspora delbrueckii, and their permanence during the fermentation of musts from grapes of the Pedro Ximenez variety. Biotechnol Lett 12:265–270

    CAS  Google Scholar 

  • Mauricio JC, Guijo S, Ortega JM (1991) Relationship between phospholipid and sterol contents in Saccharomyces cerevisiae and Toruluspora delbrueckii and their fermentation activity in grape musts. Am J Enol Vitic 42:301–308

    CAS  Google Scholar 

  • M’Baya B, Fegueur M, Servouse M, Karst F (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids 24:1020–1023

    CAS  PubMed  Google Scholar 

  • Miele A, Bouard J, Bertrand A (1993) Fatty acids from lipid fractions of leaves and different tissues of Cabernet Sauvignon grapes. Am J Enol Vitic 44:180–186

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Ness F, Achstetter T, Duport C, Karst F, Spagnoli R (1998) Sterol uptake in Saccharomyces cerevisiae heme auxotrophic mutants is affected by ergosterol and oleate but not by palmitoleate or sterol esterification. J Bacteriol 180:1913–1919

    CAS  PubMed  Google Scholar 

  • Ness F, Bourot S, Regnacq M, Spagnoli R, Berges T, Karst F (2001) SUT1 is a putative Zn[II]2Cys6-transcription factor whose upregulation enhances both sterol uptake and synthesis in aerobically growing Saccharomyces cerevisiae cells. Eur J Biochem 268:1585–1595

    CAS  PubMed  Google Scholar 

  • Reyes FGR, Wrolstad RE, Cornwell CJ (1982) Comparison of enzymic, gas-liquid chromatographic, and high performance liquid chromatographic methods for determining sugars and organic acids an strawberries at three stages of maturity. J Assoc Off Anal Chem 65:126–131

    CAS  Google Scholar 

  • Rodriguez RJ, Taylor FR, Parks LW (1982) A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholestanol. Biochem Biophys Res Commun 106:435–441

    CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Low C, Bottema C, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 837:336–343

    CAS  PubMed  Google Scholar 

  • Rosenfeld E, Beauvoit B, Rigoulet M, Salmon JM (2002) Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast 19:1299–1322

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld E, Beauvoit B, Blondin B, Salmon JM (2003) Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics. Appl Environ Microbiol 69:113–121

    Article  CAS  PubMed  Google Scholar 

  • Rosi I, Bertuccioli M (1992) Influence of lipid addition on fatty acid composition of Saccharomyces cerevisiae and aroma characteristics of experimental wines. J Inst Brew 98:305–314

    CAS  Google Scholar 

  • Roufet M, Bayonove CL, Cordonnier RE (1987) Etude de la composition lipidique du raisin Vitis vinifera L.: évolution au cours de la maturation et localisation dans la baie. Vitis 26:85–97

    CAS  Google Scholar 

  • Sablayrolles JM, Barre P, Grenier P (1987) Design of a laboratory automatic system for studying alcoholic fermentations in anisothermal enological conditions. Biotechnol Tech 1:181–184

    CAS  Google Scholar 

  • Salmon JM, Vincent O, Mauricio JC, Bely M, Barre P (1993) Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. Am J Enol Vitic 44:56–64

    CAS  Google Scholar 

  • Smith SJ, Crowley JH, Parks LW (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16:5427–5432

    CAS  PubMed  Google Scholar 

  • Valachovic M, Hronska L, Hapala I (2001) Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 197:41–45

    Article  CAS  PubMed  Google Scholar 

  • Valero E, Millan MC, Mauricio JC, Ortega JM (1998) Effect of grape skin maceration on sterol, phospholipid, and fatty acid contents of Saccharomyces cerevisiae during alcoholic fermentation. Am J Enol Vitic 49:119–124

    CAS  Google Scholar 

  • Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175:2853–2858

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Salmon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luparia, V., Soubeyrand, V., Berges, T. et al. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Appl Microbiol Biotechnol 65, 25–32 (2004). https://doi.org/10.1007/s00253-003-1549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1549-3

Keywords

Navigation