Skip to main content
Log in

Yeast cell-surface display—applications of molecular display

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (1997) Arming yeast with cell-surface catalysts. Chem Eng News 75:32

    Google Scholar 

  • Ballou CE (1982) The molecular biology of the yeast Saccharomyces. In: Strathern, JN, Jones EW, Broach JR (eds) Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 335–360

  • Boder ET, Wittrup KD (1997)Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    CAS  PubMed  Google Scholar 

  • Boder ET, Midelfort SK, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97: 10701–10705

    Article  PubMed  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J. Bacteriol. 179:4929–4936

    Google Scholar 

  • Bossier P, Goethals P, Rodrigues-Pousada C (1997) Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a ‘Glo’-type Zn-finger-containing protein. Yeast 13:717–725

    Article  CAS  PubMed  Google Scholar 

  • Cappellaro C, Hauser K, Mrsa V, Watzele M, Watzele G, Gruber C, Tanner W (1991) Saccharomyces cerevisiae a- and α-agglutinin: characterization of their molecular interaction. EMBO J 10:4081–4088

    CAS  PubMed  Google Scholar 

  • Chiswell DJ, McCafferty J (1992) Phage antibodies: will new ‘coliclonal’ antibodies replace monoclonal antibodies? Trends Biotechnol 10:80–84

    Article  CAS  PubMed  Google Scholar 

  • Cid VJ, Duran A, del Rey F, Snyder M P, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    CAS  PubMed  Google Scholar 

  • Cross GAM (1990) Cellular and genetic aspects of antigenic variation in rypanosomes. Annu Rev Immunol 8:83–110

    Article  CAS  PubMed  Google Scholar 

  • Dustin M L, Selvaraj P, Mattaliano RJ, Springer T A (1987) Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature 329:846–848

    Article  CAS  PubMed  Google Scholar 

  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JMW, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (1991) Cell walls. In Rose AH, Harrison JS (eds), The yeasts, 2nd edn, vol 4. Yeast organelles. Academic, London, pp 199–277

  • Fleet GH, Manners DJ (1977) The enzymic degradation of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 98:315–327

    CAS  PubMed  Google Scholar 

  • Francisco JA, Earhart CF, Georgiou G (1992) Transport and anchoring of β-lactamase to the external surface of Escherichia coli. Proc Natl Acad. Sci USA 89:2713–2717

    CAS  Google Scholar 

  • Francisco JA, Stathopoulos C, Warren RAJ, Kilburn DG, Georgiou G (1993) Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Bio/Technol 11:491–495

    Google Scholar 

  • Fredette B, Rutishauer U, Landmesser L (1993)Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development. J Cell Biol 123:1867–1888

    CAS  PubMed  Google Scholar 

  • Fujita Y, Katahira S, Ueda, M, Tanaka, A, Okada, H, Morikawa, Y, Fukuda, H, Kondo A (2002a) Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae, J Mol Catal B 17: 189–195

    Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002b) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68: 5136–5141

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Shimojyo R, Ohnishi N, Fukuda H, Kondo A (2003) Affinity selection of target cells from cell surface display libraries: a novel procedure using thermo-responsive magnetic nanoparticles. Appl Microbiol Biotechnol 62:478–483

    Article  CAS  PubMed  Google Scholar 

  • Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol 11:6-10

    CAS  PubMed  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss III R (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    CAS  PubMed  Google Scholar 

  • Gunneriusson E, Samuelson M, Uhlen M, Nygren P-A, Stahl S (1996) Surface display of a functional single-chain Fv antibody on Staphylococci. J Bacteriol 178:1341–1346

    CAS  PubMed  Google Scholar 

  • Harashima S, Mizuno T, Mabuchi H, Yoshimitsu S, Ramesh R, Hasebe M, Tanaka A, Oshima Y (1995) Mutations causing high basal level transcription that is independent of transcriptional activators but dependent on choromosomal position in Saccharomyces cerevisiae. Mol Gen Genet 247:716

    CAS  PubMed  Google Scholar 

  • Hardwick KG, Boothroyd J C, Rudner A D, Pelham HRB (1992) Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J 11:4187–4195

    CAS  PubMed  Google Scholar 

  • Harrison JL, Taylor IM, O’Connor CD (1990) Presentation of foreign antigenic determinants at the bacterial cell surface using the TraT lipoprotein. Res Microbiol 141:1009–1012

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard L, Klemm P (1989) Type 1 fimbriae of Escherichia coli as carrier of heterologous antigenic sequences. Gene 85:115–124

    Article  CAS  PubMed  Google Scholar 

  • Homans SW, Ferguson M A, Dwek RA, Rademacher TW, Anand R, Williams A F (1988) Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 333:269–272

    Article  CAS  PubMed  Google Scholar 

  • Horisberger M, Vonlanthen M (1977) Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch Microbiol 115:1–7

    PubMed  Google Scholar 

  • Jensen TK, Toppari J, Keiding N, Skakkebaek NE (1995) Do environmental oestrogens contribute to the decline in male reproductive health? Clin Chem 41:1896–1931

    CAS  PubMed  Google Scholar 

  • Kanai T, Atomi H, Umemura K, Ueno H, Teranishi Y, Ueda M, Tanaka A (1996) A novel heterologous gene expression system in Saccharomyces cerevisiae using the isocitrate lyase gene promoter from Candida tropicalis. Appl Microbiol Biotechnol 44:759–765

    CAS  PubMed  Google Scholar 

  • Kapteyn J C, Montijn RC, Vink E, de la Crua J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked β-1,3-/β-1,6-glucan heteropolymer. Glycobiology 6:337–345

    CAS  PubMed  Google Scholar 

  • Keike MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  PubMed  Google Scholar 

  • Keike MC, Shusta EV, Boder ET, Teyto, L, Wittrup K, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci USA 96:5651–5656

    CAS  PubMed  Google Scholar 

  • Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtills. J Bacteriol 175:5690–5696

    CAS  PubMed  Google Scholar 

  • Klis FM (1994) Cell wall assembly in yeast. Yeast 10:851–869

    CAS  PubMed  Google Scholar 

  • Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High level production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell surface glucoamylase. Appl Microbiol Biotechnol 58:291–296

    CAS  PubMed  Google Scholar 

  • Kotrba P, Doleckova L, De Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    CAS  PubMed  Google Scholar 

  • Kugimiya W, Otani Y, Kohno M, Hashimoto Y (1992) Cloning and sequence analysis of cDNA encoding Rhizopus niveus lipase. Biosci Biotech Biochem 56:716–719

    CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell-surface-engineered yeast with ability to bind, and self-sggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  PubMed  Google Scholar 

  • Lehtiö J, Wernérus H, Samuelson P, Teeri TT, Ståhl S (2001) Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. FEMS Microbiol Lett 195:197–204

    Article  PubMed  Google Scholar 

  • Lin Y, Tsumuraya T, Wakabayashi T,. Shiraga S. Fujii I, Kondo A, Tanaka A, Ueda M (2003) Display of functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol 62:226–232

    Article  CAS  PubMed  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194

    CAS  PubMed  Google Scholar 

  • Lipke PN, Wojciechowicz D, Kurjan J (1989) AGα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol Cell Biol 9:3155–3165

    CAS  PubMed  Google Scholar 

  • Little M, Fuchs P, Breitling F, Dubel S (1993) Bacterial surface presentation of proteins and peptides: An alternative to phage technology? Trends Biotechnol 11:3-5

    CAS  PubMed  Google Scholar 

  • Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal defferentiation in Saccharomyces cerevisiae. EMBO J 17:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Lu CF, Kurjan J, Lipke P N (1994) A pathway for cell anchorage of Saccharomyces cerevisiae α-agglutinin. Mol Cell Biol 14:4825–4833

    CAS  PubMed  Google Scholar 

  • Lu CF, Montijin RC, Brown JL, Klis FM, Kurjan J, Bussey H, Lipke PN (1995) Glycosylphosphatidylinositol-dependent cross linking of α-agglutinin and β 1, 6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340

    CAS  PubMed  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1973a) The structure of a β-(1,3)-d-glucan from yeast cell walls. Biochem J 135:19–30

    CAS  PubMed  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1973b) The structure of a β-(1,6)-d-glucan from yeast cell walls. Biochem J 135:31–36

    CAS  PubMed  Google Scholar 

  • Marini AM, Vissers S, Urrestarazu A, Andre B (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13:3456–3463

    CAS  PubMed  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Ito M, Fukuda H, Kondo A (2004) Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl Microbiol Biotechnol, in press

  • Meyhack B, Bajwa W, Rudolph H, Hinnen A (1982) Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences. EMBO J 1:675–680

    CAS  PubMed  Google Scholar 

  • Miki BL, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150: 878–889

    CAS  PubMed  Google Scholar 

  • Mitsui K, Yaguchi S, Tsurugi K (1994) The GTS1 gene, which contains a Gly-Thr repeat, affects the timing of budding and cell size of the yeast Saccharomyces cerevisiae. Mol Cell Biol 14:5569–5578

    CAS  PubMed  Google Scholar 

  • Miura S, Zou W, Ueda M, Tanaka A (2000) Screening of genes involved in isooctane-tolerance in Saccharomyces cerevisiae using mRNA differential display. Appl Environ Microbiol 66:4883–4889

    CAS  PubMed  Google Scholar 

  • Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I (1997) Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization. J Mol Biol 267:1247–1257

    Article  PubMed  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997a) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M Tanaka A (1997b) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503

    CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellulosic materials by cell surface-engineered yeast displaying β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Shibasaki S, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol 57:500–505

    CAS  PubMed  Google Scholar 

  • Nam J, Fujita Y, Arai T, Kondo A, Morikaw Y, Okada H, Ueda M, Tanaka A (2002) Construction of engineered yeast with the ability of binding to cellulose. J Mol Catalys 17:197–202

    Article  CAS  Google Scholar 

  • Newton SMC, Jacob CO, Stocker BAD (1989) Immune response to cholera toxin epitope inserted in salmonella flagellin. Science 244:70–72

    CAS  PubMed  Google Scholar 

  • Nilsson, B, Moks, T, Jansson, B, Abrahmsén, L, Elmbrad, A, Holmgren, E, Henrichson, C, Jones, TA, Uhlén, M (1987) A synthetic IgG-binding domain based on Staphylococcal protein A. Prot Eng 1:107–113

    CAS  Google Scholar 

  • Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T (1999) New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol 154:76–83

    CAS  PubMed  Google Scholar 

  • Routledge EJ, Sumpter JP (1997) Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem 272:3280–3288

    CAS  PubMed  Google Scholar 

  • Roy A, Lu CF, Marykwas D L, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein α-agglutinin. Mol Cell Biol 11:4196–4206

    CAS  PubMed  Google Scholar 

  • Rudolph H, Hinnen A (1987) The yeast PHO5 promoter: Phosphate-control elements and sequences mediating mRNA start-site selection. Proc Natl Acad Sci USA 84:1340–1344

    CAS  PubMed  Google Scholar 

  • Samuelson P, Hansson M, Ahborg N, Andreoni C, Gotz F, Bachi T, Nguyen TN, Binz H, Uhlen M, Stahl S (1995) Cell surface display of recombinant proteins on Staphylococcus carnosus. J Bacteriol 177:1470–1476

    CAS  PubMed  Google Scholar 

  • Samuelson P, Wernerus H, Svedberg M, Stahl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates, Appl Microbiol Biotechnol 60:469–474

    Google Scholar 

  • Schekman R (1992) Genetic and biochemical analysis of vesicular traffic in yeast. Curr Opin Cell Biol 4:587–592

    CAS  PubMed  Google Scholar 

  • Schekman R, Novick P (1982) The molecular biology of the yeast Saccharomyces,. In: Strathern JN, Jones EW, Broach J.R (eds) Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 361–398

  • Schneewind O, Fowler A, Faull K F (1995) Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 269:103–106

    Google Scholar 

  • Schreuder MP, Brekelmans S, Van den Ende H, Klis F M (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9:399–409

    CAS  PubMed  Google Scholar 

  • Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the yeast cells. Trends Biotechnol 14:115–120

    CAS  PubMed  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    CAS  PubMed  Google Scholar 

  • Sharpe RM (1998) Environmental oestrogens and male infertility. Pure Appl Chem 70:1685–1701

    CAS  Google Scholar 

  • Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa M, Osumi M, Tanaka A (2001a) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by the fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    CAS  PubMed  Google Scholar 

  • Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, Osumi M, Tanaka A (2001b) Creation of cell surface-engineered yeast which can emit different fluorescence in response to the glucose concentration. Appl Microbiol Biotechnol 57:528–533

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Ninomiya Y, Ueda M, Iwahashi M, Katsuragi T, Tani Y, Harashima S, Tanaka A (2001c) Intelligent yeast strain with the ability of self-monitoring of the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl Miocrobiol Biotechnol 57:702–707

    Article  CAS  Google Scholar 

  • Shigechi H, Uyama K, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Efficent ethanol production from through development of novel flocculent yeast strains displaying glucoamylase and co-displying of secreting α-amylase. J Mol Cat B 17:179–187

    Article  CAS  Google Scholar 

  • Shimojo R, Furukawa H, Fukuda H, Kondo A (2003) Preparation of yeast strains displaying IgG binding domain ZZ and EGFP for novel antigen detection system. J Biosci Bioeng 96:493–495

    Google Scholar 

  • Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a scafford for T-cell receptor engineering. Nat Biotechnol 18:754–759

    Google Scholar 

  • Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339

    CAS  PubMed  Google Scholar 

  • Sousa C, Cebola A, de Lorenzo V (1996) Enhanced metallosorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–1020

    Google Scholar 

  • Terrance K, Heller P, Wu Y-S, Lipke PN (1987) Identification of glycoprotein components of α-agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol 169:475–482

    CAS  PubMed  Google Scholar 

  • Teunissen AW, Holub E, van der Hucht J, van den Berg JA, Steensma HY (1993) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    CAS  PubMed  Google Scholar 

  • Ueda M, Tanaka A (2000a) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    CAS  Google Scholar 

  • Ueda M, Tanaka A (2000b) Cell surface engineering of yeast—construction of arming yeast with biocatalytst. J Biosci Bioeng 90:125–136

    CAS  Google Scholar 

  • Valentin E, Herrero E, Pastor FIJ, Sentandreu R (1984) Solubilization and analysis of mannoprotein molecules from the cell wall of Saccharomyces cerevisiae. J Gen Microbiol 130:1419–1428

    CAS  Google Scholar 

  • Van der Vaart JM, Caro LHP, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110

    PubMed  Google Scholar 

  • Wagner J-C, Escher C, Wolf DH (1987) Some characteristics of hormone (pheromone) processing enzymes in yeast. FEBS Lett 218:31–34

    Article  CAS  PubMed  Google Scholar 

  • Wang AA, Mulchandani A, Chen W (2001) Whole-cell immobilization using cell surface-exposed cellulose-binding domain. Biotechnol Prog 17:407–411

    Article  PubMed  Google Scholar 

  • Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686

    Article  CAS  PubMed  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino M, Onnela M-L, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225

    CAS  PubMed  Google Scholar 

  • Watzele M, Klis FM, Tanner W (1988) Purification and characterization of the inducible a-agglutinin of Saccharomyces cerevisiae. EMBO J 7:1483–1488

    CAS  PubMed  Google Scholar 

  • Yaguchi S, Mitsui K, Iha H, Tsurugi K (2000) Phosphorylation of the GTS1 gene product of the yeast Saccharomyces cerevisiae and its effect on heat tolerance and flocculation. FEMS Microbiol Lett 187:179–84

    CAS  PubMed  Google Scholar 

  • Yasui M, Shibasaki S, Kuroda K, Ueda M, Kawada N, Nishikawa J, Nishihara T, Tanaka A (2002) An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl Microbiol Biotechnol 59:329–331

    Article  CAS  PubMed  Google Scholar 

  • Ye K, Shibasaki S, Ueda M, Tanaka A (2000) Construction of engineered yeast with glucose-inducible emission of green fluorescence from cell surface. Appl Microbiol Biotechnol 54:90–96

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Ueda M, Yamanaka H, Tanaka A (2001) Construction of a combinatorial protein library displayed on yeast. J Biosci Biotechnol 92:393–396

    Article  CAS  Google Scholar 

  • Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, A., Ueda, M. Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64, 28–40 (2004). https://doi.org/10.1007/s00253-003-1492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1492-3

Keywords

Navigation