Skip to main content
Log in

Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO2 with NO3 or O2 as electron acceptor, with a preference for O2 if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 °C with a µ max of 0.14 h−1 and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the µ max was 0.31 h−1. NO2 also served as electron acceptor, but reduction of Fe(OH)3, MnO2, SO4 2−, fumarate or ClO3 was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.

Similar content being viewed by others

References

  • Baggi G, Barbieri P, Galli E, Tollari S (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53:2129–2132

    CAS  PubMed  Google Scholar 

  • Bennasar A, Rossello MR, Lalucat J, Moore ERB (1996) 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 46:200–205

    Google Scholar 

  • Blake CK, Hegeman GD (1987) Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN-1. J Bacteriol 169:4878–4883

    CAS  PubMed  Google Scholar 

  • Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomsal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    CAS  PubMed  Google Scholar 

  • Çetin ET, Töreci K, Ang Ö (1965) Encapsulated Pseudomonas aeruginosa (Pseudomonas aeruginosa mucosus) strains. J Bacteriol 89:1432–1433

    Google Scholar 

  • Cox EE, Major D, Edwards E (2000) Natural attenuation of 1,2-dichloroethane in groundwater at a chemical manufacturing facility. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Batelle, Monterey, California

  • Criddle CS, Dewitt JT, D. G-G, McCarty PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246

    CAS  PubMed  Google Scholar 

  • Dijk JA, de Bont JAM, Lu X, Becker PM, Bosma TNP, Rijnaarts HHM, Gerritse J (2000) Anaerobic oxidation of (chlorinated) hydrocarbons. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Batelle, Monterey, California

  • Duarte GF, Soares Rosado A, Seldin L, Keijzer-Wolters AC, van Elsas JD (1998) Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community. J Microbiol Meth 32:21–29

    Article  CAS  Google Scholar 

  • Gerritse J, van der Woude BJ, Gottschal JC (1992) Specific removal of chlorine from the ortho-position of halogenated benzoic acids by reductive dechlorination in anaerobic enrichment cultures. FEMS Microbiol Lett 79:273–280

    Article  CAS  PubMed  Google Scholar 

  • Gerritse J, Borger A, van Heiningen E, Rijnaarts HHM, Bosma TNP, Taat J, van Winden B, Dijk JA, de Bont JAM (1999) Assesment and monitoring of 1,2-dichloroethane dechlorination. In: Leeson A, Alleman BC (eds) Engineered approaches for in situ bioremediation of chlorinated solvent contamination. Batelle, Columbus, Ohio, pp 73–80

  • Hage JC, Hartmans S (1999) Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1. Appl Environ Microbiol 65:2466–2470

    CAS  PubMed  Google Scholar 

  • Hantke J (2000) Molekularbiologische Analyse der mikrobiellen Zusammensetzung anaerober, Dioxine dechlorierender Mischkulturen. PhD thesis, Martin-Luther University Halle.

  • Heijthuisen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Ecol 38:57–64

    Article  CAS  Google Scholar 

  • Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65:1045–1049

    CAS  PubMed  Google Scholar 

  • Janssen DB, Scheper A, Witholt B (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures. In: Houwink EH, van der Meer RR (eds) Innovations in biotechnology. Progress in industrial microbiology, vol 20. Elsevier Biomedical, Amsterdam, pp 169–178

  • Janssen DB, Scheper A, Dijkhuizen L, Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ Microbiol 49:673–677

    CAS  PubMed  Google Scholar 

  • Kodoma T, Shimada K, Mori T (1969) Studies on anaerobic biphasic growth of a denitrifying bacterium, Pseudomonas stutzeri. Plant Cell Physiol 10:855–865

    Google Scholar 

  • Körner H, Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55:1670–1676

    PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • McCann J, Simmon V, Streitwieser D, Ames BN (1975) Mutagenicity of chloroacetaldehyde, a possible metabolic product of 1,2-dichloroethane (ethylene chloride), chloroethanol (ethylene chlorohydrine), vinyl chloride and cyclosphosphamide. Proc Natl Acad Sci USA 72:3190–3192

    CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Bakker CM (1982) Degradation of caffeine by immobilized cells of Pseudomonas putida strain C 3024. European J Appl Microbiol Biotechnol 15:214–217

    CAS  Google Scholar 

  • Murray JW (1974) The surface chemistry of hydrous manganese oxide. J Colloid Interface Sci 46:357–371

    CAS  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Palleroni NJ, Doudoroff M, Stanier RY, Solánes RE, Mandel M (1970) Taxonomy of the aerobic pseudomonads, the properties of the Pseudomonas stutzeri group. J Gen Microbiol 60:215–231

    CAS  PubMed  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTAP and FASTA. Methods Enzymol 183:63–98

    CAS  PubMed  Google Scholar 

  • Poelarends GJ, van Hylckama Vlieg JET, Marchesi JR, Freitas Dos Santos LM, Janssen DB (1999) Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. J Bacteriol 181:2050–2058

    CAS  PubMed  Google Scholar 

  • Ralebitso TK, Röling WFM, Braster M, Senior E, van Verselveld HW (2001) 16S rDNA-based characterisation of BTX-catabolizing microbial associations isolated from a South African sandy soil. Biodegradation 11:351–357

    Article  Google Scholar 

  • Richterich R (1965) Klinische Chemie. Akademische Verlaggesellschaft, Frankfurt

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sijderius R. (1946). PhD thesis, University of Amsterdam

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Strotmann UJ, Pentenga M, Janssen DB (1990) Degradation of 2-chloroethanol by wild type and mutants of Pseudomonas putida US2. Arch Microbiol 154:294–300

    CAS  Google Scholar 

  • Stucki G, Brunner W, Staub D, Leisinger T (1981) Microbial degradation of chlorinated C1 and C2 hydrocarbons. In: Leisinger T, Cook AM, Hütter R, Nüesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, London, pp 131–137

  • Van den Wijngaard AJ, van der Kamp KWHJ, van der Ploeg J, Pries F, Kazemier B, Janssen DB (1992) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol 58:976–983

    PubMed  Google Scholar 

  • Van der Meer JR, Roelofsen W, Schraa G, Zehnder JB (1987) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol Ecol 45:333–341

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Xu B, Enfors SO (1996) Influence of nitrate starvation on nitrite accumulation during denitrification by Pseudomonas stutzeri. Appl Microbiol Biotechnol 45:229–235

    Article  Google Scholar 

Download references

Acknowledgements

We thank Harald Ruijssenaars (Hercules European Research Center) and Hans Visser (Wageningen University) for help with cloning the 16S rDNA. We also thank Dick B. Janssen, who kindly provided bacterial strains. The research described in this paper was supported by and carried out at the Research Centre on Soil, Sediment and Groundwater Management and Remediation WUR/TNO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Dijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijk, J.A., Stams, A.J.M., Schraa, G. et al. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ. Appl Microbiol Biotechnol 63, 68–74 (2003). https://doi.org/10.1007/s00253-003-1346-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1346-z

Keywords

Navigation