Skip to main content
Log in

Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri

  • Short Contribution
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biodegradation of chloronaphthalene (CN) and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri, which can degrade dichlorinated dioxins and non-chlorinated dioxin-like compounds, was investigated. Naphthalene, phenanthrene, 1-chloronaphthalene (1-CN) and 2-chloronaphthalene (2-CN) were metabolized by the fungus to form several oxidized products. Naphthalene and phenanthrene were metabolized to the corresponding hydroxylated and dihydrodihydroxylated metabolites. 2-CN was metabolized to 3-chloro-2-naphtol, 6-chloro-1-naphtol and two other chloronaphtols, CN-dihydrodiols and CN-diols. Significant inhibition of the degradation of these substrates was observed when they were incubated with the cytochrome P-450 monooxygenase inhibitors 1-aminobenzotriazole and piperonyl butoxide. These results suggest that P. lindtneri initially oxidizes these substrates by a cytochrome P-450 monooxygenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Blankenship AL, Kannan K, Villalobos SA, Villeneuve DL, Falandysz J, Imagawa T, Jacobsson E, Giesy J (2000) Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environ Sci Technol 34:3153–3158

    Article  CAS  Google Scholar 

  • Casillas RP, Crow SA Jr, Heinze TM, Cerniglia CE (1996) Initial oxidative and subsequent conjugatable metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16:205–215

    CAS  PubMed  Google Scholar 

  • Chu I, Secours V, Viau A (1976) Metabolites of chloronaphthalene. Chemosphere 6:439–444

    Google Scholar 

  • Chu I, Villeneuve DC, Secours V, Viau A (1977) Metabolism of chloronaphthalenes. J Agric Food Chem 25:881–883

    CAS  PubMed  Google Scholar 

  • Falandysz J (1998) Polychlorinated napthalenes: an environmental update. Environ Pollut 101:77–90

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JJN (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons and particles. Science 276:1045–1052

    CAS  PubMed  Google Scholar 

  • Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53:129–136

    CAS  PubMed  Google Scholar 

  • James PM, Woodcock D (1951) Synthesis of plant growth regulators. Part I. Substituted β-naphthyloxyacetic acids. J Chem Soc 3418–3412

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • LeBlond JD, Applegate BM, Menn F-M, Schultz TW, Sayler GS (2000) Structure-toxicity assessment of metabolites of the aerobic bacterial transformation of substituted naphthalenes. Environ Toxicol Chem 19:1235–1246

    CAS  Google Scholar 

  • Mori T, Kondo R (2002a) Degradation of 2,7-dichlorodibenzo-p-dioxin by wood-rotting fungi, screened by dioxin degrading ability. FEMS Microbiol Lett 213:127–131

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kondo R (2002b) Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol Lett 216:223–227

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kondo R (2002c) Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 60:200–205

    CAS  PubMed  Google Scholar 

  • Morris CM, Barnsley EA (1982) The cometabolism of 1- and 2-chloronaphthalene by Pseudomonads. Can J Microbiol 28:73–79

    CAS  Google Scholar 

  • Ruzo LO, Safe S, Hutzinger O (1975) Hydroxylated metabolites of chloronaphthalenes (Halowax 1031) in pig urine. Chemosphere 3:121–123

    Google Scholar 

  • Ruzo LO, Safe S, Jones D, Platonow N (1976) Uptake and distribution of chloronaphthalenes and their metabolites in pigs. J Agric Food Chem 24:581–583

    CAS  PubMed  Google Scholar 

  • Schneider M, Stieglitz L, Will R, Zwick G (1998) Formation of polychlorinated naphthalenes on fly ash. Chemosphere 37:9-12

    Article  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    CAS  Google Scholar 

  • Villeneuve DL, Kannan K, Khim JS, Falandysz J, Nikiforov VA, Blankenship AL, Giesy JP (2000) Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. Arch Environ Contam Toxicol 39:273–281

    Article  CAS  PubMed  Google Scholar 

  • Walker N, Wiltshire GH (1955) The decomposition of 1-chloro- and 1-bromonaphthalene by soil bacteria. J Gen Microbiol 12:478–483

    CAS  Google Scholar 

  • Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–1438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, T., Kitano, S. & Kondo, R. Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri . Appl Microbiol Biotechnol 61, 380–383 (2003). https://doi.org/10.1007/s00253-003-1253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1253-3

Keywords

Navigation