Skip to main content

Advertisement

Log in

Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC–peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530-bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530-bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from six Chinese rhesus macaques. Overall, approximately 70 % of the alleles distinguished in these six animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Budde ML, Lhost JJ, Burwitz BJ et al (2011) Transcriptionally abundant major histocompatibility complex class I alleles are fundamental to nonhuman primate simian immunodeficiency virus-specific CD8+ T cell responses. J Virol 85:3250–3261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Budde ML, Wiseman RW, Karl JA, Hanczaruk B, Simen BB, O’Connor DH (2010) Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics 62:773–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Deng W, Jia C et al (2009) Pathological lesions and viral localization of influenza A (H5N1) virus in experimentally infected Chinese rhesus macaques: implications for pathogenesis and viral transmission. Arch Virol 154:227–233

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lai C, Wu X, Lu Y, Han D, Guo W, Fu L, Andrieu JM, Lu W (2011) Variability of bio-clinical parameters in Chinese-origin rhesus macaques infected with simian immunodeficiency virus: a nonhuman primate AIDS model. PLoS One 6:e23177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi HJ, Kim MK, Lee HJ, Ko JH, Jeong SH, Lee JI, Oh BC, Kang HJ, Wee WR (2011) Efficacy of pig-to-rhesus lamellar corneal xenotransplantation. Invest Ophthalmol Vis Sci 52:6643–6650

    Article  PubMed  Google Scholar 

  • Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE (2004) Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res 14:1501–1515

    Article  CAS  PubMed  Google Scholar 

  • de Groot NG, Otting N, Robinson J et al (2012) Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 64:615–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doxiadis GG, de Groot N, Otting N et al (2013) Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics 65:569–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erlich HA, Valdes AM, McDevitt SL, Simen BB, Blake LA, McGowan KR, Todd JA, Rich SS, Noble JA (2013) Next generation sequencing reveals the association of DRB3*02:02 with type 1 diabetes. Diabetes 62:2618–2622

    Article  CAS  PubMed  Google Scholar 

  • Fernandez CS, Reece JC, Saepuloh U, De Rose R, Ishkandriati D, O’Connor DH, Wiseman RW, Kent SJ (2011) Screening and confirmatory testing of MHC class I alleles in pig-tailed macaques. Immunogenetics 63:511–521

    Article  PubMed  Google Scholar 

  • Hutnick NA, Myles DJ, Hirao L et al (2012) An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge. Vaccine 30:3202–3208

    Article  CAS  PubMed  Google Scholar 

  • Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O’Connor DH (2013) Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 (Bethesda) 3(7):1195–201

    Article  CAS  Google Scholar 

  • Kloverpris HN, Stryhn A, Harndahl M et al (2012) HLA-B*57 micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol 86:919–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Ruan Z, Zhang H, Peng N, Zhao S, Qin L, Chen X (2012) Characterization of peripheral blood T lymphocyte subsets in Chinese rhesus macaques with repeated or long-term infection with Plasmodium cynomolgi. Parasitol Res 110:961–969

    Article  PubMed  Google Scholar 

  • Ling B, Rogers LB, Johnson AM, Piatak M, Lifson J, Veazey R (2013) Effect of combination antiretroviral therapy on Chinese rhesus macaques of SIV infection. AIDS Res Hum Retroviruses 29(11):1465–74

    Article  CAS  PubMed  Google Scholar 

  • Mallal S, Nolan D, Witt C (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359:727–732

    Article  CAS  PubMed  Google Scholar 

  • Southwick CH, Farooq Siddiqi M (1994) Population status of nonhuman primates in Asia, with emphasis on rhesus macaques in India. Am J Primatol 34(1):51–59

    Article  Google Scholar 

  • Migueles SA, Sabbaghian MS, Shupert WL et al (2000) HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A 97:2709–2714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mumbauer A, Gettie A, Blanchard J, Cheng-Mayer C (2013) Efficient mucosal transmissibility but limited pathogenicity of R5 SHIVSF162P3N in Chinese origin rhesus macaques. J Acquir Immune Defic Syndr 62(5):496–504

    Article  PubMed  Google Scholar 

  • Otting N, Heijmans CM, Noort RC, de Groot NG, Doxiadis GG, van Rood JJ, Watkins DI, Bontrop RE (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci U S A 102:1626–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Profaizer T, Eckels D (2012) HLA alleles and drug hypersensitivity reactions. Int J Immunogenet 39:99–105

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Malik A, Parham P, Bodmer JG, Marsh SGE (2000) IMGT/HLA—a sequence database for the human major histocompatibility complex. Tissue Antigens 55:280–287

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Halliwell JA, McWilliam H, Lopez R, Marsh SG (2013) IPD—the immuno polymorphism database. Nucleic Acids Res 41:D1234–D1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stocchi L, Cascella R, Zampatti S, Pirazzoli A, Novelli G, Giardina E (2012) The pharmacogenomic HLA biomarker associated to adverse abacavir reactions: comparative analysis of different genotyping methods. Curr Genomics 13:314–320

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Sun Z, He X, Tan T, Lu B, Guo X, Su B, Ji W (2011) Derivation of rhesus monkey parthenogenetic embryonic stem cells and its microRNA signature. PLoS One 6:e25052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiseman RW, Karl JA, Bimber BN et al (2009) Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 15:1322–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O’Connor DH (2013) Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J. doi:10.1093/ilar/ilt036

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Gabriel Starrett for bioinformatics support. We thank the Batelle Biomedical Research Center for providing us with Chinese rhesus macaque samples. This research was supported by the Department of Health and Human Services Public Health Service grant from the National Institutes of Health under award R24 OD011048.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. O’Connor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 31 kb)

Online Resource 2

(PDF 59.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley, D.M., Karl, J.A., Creager, H.M. et al. Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one. Immunogenetics 66, 15–24 (2014). https://doi.org/10.1007/s00251-013-0744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-013-0744-3

Keywords

Navigation