Skip to main content
Log in

Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Genes of the vertebrate major histocompatibility complex (MHC) are crucial to defense against infectious disease, provide an important measure of functional genetic diversity, and have been implicated in mate choice and kin recognition. As a result, MHC loci have been characterized for a number of vertebrate species, especially mammals; however, elephants are a notable exception. Our study is the first to characterize patterns of genetic diversity and natural selection in the elephant MHC. We did so using DNA sequences from a single, expressed DQA locus in elephants. We characterized six alleles in 30 African elephants (Loxodonta africana) and four alleles in three Asian elephants (Elephas maximus). In addition, for two of the African alleles and three of the Asian alleles, we characterized complete coding sequences (exons 1–5) and nearly complete non-coding sequences (introns 2–4) for the class II DQA loci. Compared to DQA in other wild mammals, we found moderate polymorphism and allelic diversity and similar patterns of selection; patterns of non-synonymous and synonymous substitutions were consistent with balancing selection acting on the peptides involved in antigen binding in the second exon. In addition, balancing selection has led to strong trans-species allelism that has maintained multiple allelic lineages across both genera of extant elephants for at least 6 million years. We discuss our results in the context of MHC diversity in other mammals and patterns of evolution in elephants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts SC (1999) Thirteen Mhc-DQA1 alleles from two populations of baboons. Immunogenetics 49:825–827

    Article  CAS  PubMed  Google Scholar 

  • Antunes SG, de Groot NG, Brok H, Doxiadis G, Menezes AAL, Otting N, Bontrop RE (1998) The common marmoset: a new world primate species with limited MHC class II variability. Proc Natl Acad Sci U S A 95:11745–11750

    Article  CAS  PubMed  Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2003) Characterization of tetranucleotide microsatellite loci in the African savannah elephant (Loxodonta africana africana). Mol Ecol Notes 3:244–246

    Article  CAS  Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2006) The ties that bind: genetic relatedness predicts the fission and fusion of groups in wild African elephants (Loxodonta africana). Proc Roy Soc London 273:513–522

    Article  CAS  Google Scholar 

  • Archie EA, Hollister-Smith JA, Poole JH, Lee PC, Moss CJ, Maldonado JE, Fleischer RC, Alberts SC (2007) Behavioral inbreeding avoidance in wild African elephants. Mol Ecol 16:4138–4148

    Article  CAS  PubMed  Google Scholar 

  • Archie EA, Maldonado JE, Hollister-Smith JA, Poole JH, Moss CJ, Fleischer RC, Alberts SC (2008) Fine-scale population genetic structure in a fission–fusion society. Mol Ecol 17:2666–2679

    Article  PubMed  Google Scholar 

  • Armbruster P, Lande R (1993) A population viability analysis for African elephant (Loxodonta africana): how big should reserves be? Conserv Biol 7:602–610

    Article  Google Scholar 

  • Borriello F, Krauter KS (1990) Reactive site polymorphism in the murine protease inhibitor gene family is delineated using a modification of the PCR reaction. Nucleic Acids Res 18:5481–5487

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461

    Article  Google Scholar 

  • Caughley G, Dublin HT, Parker ISC (1990) Projected decline of the African elephant. Biol Conserv 54:157–164

    Article  Google Scholar 

  • Cheetham SA, Thom MD, Jury F, Ollier WER, Beynon RJ, Hurst JL (2007) The genetic basis of individual-recognition signals in the mouse. Curr Biol 17:1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Cutrera AP, Lacey EA (2006) Major histocompatibility complex variation in talas tuco-tucos: the influence of demography on selection. J Mammal 87:706–716

    Article  Google Scholar 

  • Decker DJ, Stewart BS, Lehman N (2002) Major histocompatibility complex class II DOA sequences from three Antarctic seal species verify stabilizing selection on the DO locus. Tissue Antigens 60:534–538

    Article  CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    CAS  PubMed  Google Scholar 

  • Gaudier S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals and extreme and interrupted level of nucleotide diversity. Genome Res 10:1579–1586

    Article  Google Scholar 

  • Geluk A, Elferink DG, Slierendregt BL, Vanmeijgaarden KE, de Vries RRP, Ottenhoff THM, Bontrop RE (1993) Evolutionary conservation of major histocompatibility complex-DR/peptide/T cell interactions in primates. J Exp Med 177:979–987

    Article  CAS  PubMed  Google Scholar 

  • Grobler DG, Raath JP, Braak LE, Keet DF, Gerdes GH, Barnard BJ, Kriek NP, Jardine J, Swanepoel R (1995) An outbreak of encephalomyocarditis-virus infection in free-ranging African elephants in the Kruger National Park. Onderstepoort J Vet Res 62:97–108

    CAS  PubMed  Google Scholar 

  • Harrigan RJ, Mazza ME (2008) Computation vs. cloning: evaluation of two methods for haplotype determination. Mol Ecol Resour 8:1239–1248

    Article  CAS  Google Scholar 

  • Hollister-Smith JA, Poole JH, Archie EA, Vance EA, Georgiadis NJ, Moss CJ, Alberts SC (2007) Age, musth and paternity in wild male African elephants, Loxodonta africana. Anim Behav 74:287–296

    Article  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci evidence for overdominant selection. Proc Natl Acad Sci 86:958–962

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  CAS  PubMed  Google Scholar 

  • Klein J (1980) Generation of diversity at MHC loci: implications for T-cell receptor repertoires. In: Fougereau M, Dausset J (eds) Immunology 80. Academic, London, pp 239–235

    Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex, 1st edn. Wiley, New York

    Google Scholar 

  • Krause J, Dear PH, Pollack JL, Slatkin M, Spriggs H, Barnes I, Lister AM, Ebersberger I, Paabo S, Hofreiter M (2006) Multiplex amplification of the mammoth mitochondrial genome and the evolution of elephantidae. Nature 439:724–727

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4(4):e91

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • L’Abbe D, Belmaaza A, Decary F, Chartrand P (1992) Elimination of heteroduplex artifacts when sequencing HLA genes amplified by polymerase chain reaction. Immunogenetics 35:395–397

    PubMed  Google Scholar 

  • Lehman N, Decker DJ, Stewart BS (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among Antarctic phocid pinnipeds. J Mammal 85:1215–1224

    Article  Google Scholar 

  • Lindique PM, Turnbull PCB (1994) Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J Vet Res 61:71–83

    Google Scholar 

  • Manning CJ, Wakeland EK, Potts WK (1992) Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 360:581–583

    Article  CAS  PubMed  Google Scholar 

  • Mbise AN, Mlengeya TDK, Mollel JO (1998) Septicaemic salmonellosis of elephants in Tanzania. Bull Anim Health Prod Afr 46:95–100

    Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizrik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Naruse TK, Kawata H, Anzai T, Takashige N, Kagiya M, Nose Y, Nabeya N, Isshiki G, Tatsumi N, Inoko H (1999) Limited polymorphism in the HLA-DOA gene. Tissue Antigens 53:359–365

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci U S A 95:3714–3719

    Article  CAS  PubMed  Google Scholar 

  • Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci U S A 99:11260–11264

    Article  CAS  PubMed  Google Scholar 

  • Piertney SB, Olivier MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODEL TEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rajakaruna RS, Brown A, Kaukinen KH, Miller KM (2006) Major histocompatibility complex and kin discrimination in Atlantic salmon and brook trout. Mol Ecol 15:4569–4575

    Article  CAS  PubMed  Google Scholar 

  • Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641

    Article  CAS  PubMed  Google Scholar 

  • Richman LK, Montali RJ, Garber RL, Kennedy MA, Lehnhardt J, Hildebrandt T, Schmitt D, Hardy D, Alcendor DJ, Hayward GS (1999) Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 283:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Richman LK, Montali RJ, Hayward GS (2000) Review of a newly recognized disease of elephants caused by endotheliotropic herpesviruses. Zoo Biol 19:383–392

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386 Source code available at http://fokker.wi.mit.edu/primer3/.

  • Ryan SJ, Thompson SD (2001) Disease risk and inter-institutional transfer of specimens in cooperative breeding programs: herpes and the elephant species survival plan. Zoo Biol 20:89–101

    Article  PubMed  Google Scholar 

  • Scally M, Madsen O, Douady CJ, de Jong WW, Stanhope MJ (2001) Molecular evidence for the major clades of placental mammals. J Mamm Evol 8:239–277

    Article  Google Scholar 

  • Slade RW, Moritz C, Heideman A, Hale PT (1993) Rapid assessment of single-copy nuclear DNA variation in diverse species. Mol Ecol 2:359–373

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland

    Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism at the major histocompatibility complex loci. Genetics 124:967–978

    CAS  PubMed  Google Scholar 

  • Waddell PJ, Shelley S (2003) Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, [gamma]-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol 28:197–224

    Article  CAS  PubMed  Google Scholar 

  • Weber DS, Brent SS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl H, Walenstrom J, Hansson B, Hasselquist D, von Schantz T, and Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London 272:1511–1518

    Google Scholar 

  • Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat 160:S225–S237

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Office of the President of Kenya for permission to work in Amboseli National Park under permit number MOES&T 13/001/30C 72/7. We thank the Kenya Wildlife Service for local sponsorship. We thank the Amboseli Elephant Research project for invaluable scientific and logistical support, particularly the team of N. Njiraini, K. Sayialel, and S. Sayialel who contributed greatly to the collection of genetic samples. We thank the Smithsonian National Zoo, the Philadelphia Zoo in Philadelphia, PA, the Gladys Porter Zoo in Brownsville, TX, and the Six Flags Wild Safari Park in Jackson, NJ for their support and cooperation in sample collection. This research was supported by the Smithsonian Institution Abbott Endowment Fund, the National Zoo’s Institution Center for Conservation and Evolutionary Genetics, the Friends of the National Zoo, the National Science Foundation (IBN0091612 to SCA), the Amboseli Trust for Elephants, the Amboseli Elephant Research Project, and Duke University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Archie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archie, E.A., Henry, T., Maldonado, J.E. et al. Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 62, 85–100 (2010). https://doi.org/10.1007/s00251-009-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0413-8

Keywords

Navigation