Skip to main content
Log in

Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

In order to understand the expression and evolution of host resistance to pathogens, we need to examine the links between genetic variability at the major histocompatibility complex (Mhc), phenotypic expression of the immune response and parasite resistance in natural populations. To do so, we characterized the Mhc class I and IIB genes of house sparrows with the goal of designing a PCR-based genotyping method for the Mhc genes using denaturing gradient gel electrophoresis (DGGE). The incredible success of house sparrows in colonizing habitats worldwide allows us to assess the importance of the variability of Mhc genes in the face of various pathogenic pressures. Isolation and sequencing of Mhc class I and IIB alleles revealed that house sparrows have fewer loci and fewer alleles than great reed warblers. In addition, the Mhc class I genes divided in two distinct lineages with different levels of polymorphism, possibly indicating different functional roles for each gene family. This organization is reminiscent of the chicken B complex and Rfp-Y system. The house sparrow Mhc hence appears to be intermediate between the great reed warbler and the chicken Mhc, both in terms of numbers of alleles and existence of within-class lineages. We specifically amplified one Mhc class I gene family and ran the PCR products on DGGE gels. The individuals screened displayed between one and ten DGGE bands, indicating that this method can be used in future studies to explore the ecological impacts of Mhc diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    CAS  PubMed  Google Scholar 

  • Briles WE, Stone HA, Cole RK (1977) Marek’s disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195:193–195

    CAS  PubMed  Google Scholar 

  • Brown JL, Eklund A (1994) Kin recognition and the major histocompatibility complex: an integrative review. Am Nat 143:435–461

    Article  Google Scholar 

  • Edwards SV Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian MHC genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci USA 92:12200–12204

    CAS  PubMed  Google Scholar 

  • Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250

    CAS  PubMed  Google Scholar 

  • Guillemot F, Billault A, Pourquié O, Béhar G, Chaussé A-M, Zoorob R, Kreibich G, Auffray C (1988) A molecular map of the chicken major histocompatibility complex: the class IIβ genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7:2775–2785

    CAS  PubMed  Google Scholar 

  • Gu X, Nei M (1999) Locus specificity of polymorphic alleles and evolution by a birth-and-death process in mammalian MHC genes. Mol Biol Evol 16:147–156

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1988) Patterns of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    PubMed  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at the major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    PubMed  Google Scholar 

  • Jacob JP, Milne S, Beck S, Kaufman J (2000) The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics 51:138–147

    CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Capra JD (1999) Immunobiology: the immune system in health and disease. Current Biology Publications, London

  • Juul-Madsen HR, Dalgaard TS, Afanassieff M (2000) Molecular characterization of major and minor MHC class I and II genes in B21-like haplotypes in chickens. Anim Genet 31:252–261

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates. Immunogenetics 50:228–236

    CAS  PubMed  Google Scholar 

  • Kaufman J, Völk H, Wallny H (1995) A “minimal essential MHC” and an “unrecognized MHC”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    CAS  PubMed  Google Scholar 

  • Klein J, Satta Y, O’hUigin C, Takahata N (1993) The molecular descent of the major histocompatibity complex. Annu Rev Immunol 11:269–295

    CAS  PubMed  Google Scholar 

  • Kroemer G, Bernot A, Béhar G, Chaussé A, Gastinel L, Guillemot F, Park I, Thoraval P, Zoorob R, Auffray C (1990) Molecular genetics of the chicken MHC: current status and evolutionary aspects. Immunol Rev 113:119–145

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, Penn.

  • Miller MM, Goto R, Bernot A, Zoorob R, Auffray C, Bumstead N, Briles WE (1994) Two MHC class I and two MHC class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci USA 91:4397–4401

    CAS  PubMed  Google Scholar 

  • Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturant gradient gel electrophoresis. Methods Enzymol 155:501–527

    CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) Proceedings of the 11th histocompatibility workshop and conference, vol 2. Oxford University Press, Oxford, pp 27–38

  • Nei M, Gu X, Sitinikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    CAS  PubMed  Google Scholar 

  • Ober C (1992) The maternal-fetal relationship in human pregnancy: an immunological perspective. Exp Clin Immunogenet 9:1–14

    CAS  PubMed  Google Scholar 

  • O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434

    CAS  PubMed  Google Scholar 

  • Parham P, Lomen CE, Lawlor DA, et al (1988) Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci USA 85:4005–4009

    CAS  PubMed  Google Scholar 

  • Potts WK, Wakeland EK (1990) Evolution of diversity at the major histocompatibility complex. Trends Evol Ecol 5:181–187

    Article  Google Scholar 

  • Potts WK, Wakeland EK (1993) Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet 9:408–412

    Article  CAS  PubMed  Google Scholar 

  • Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    Article  CAS  PubMed  Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an intergrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  • Sanjayan MA, Crooks K, Zegers G, Foran D (1996) Genetic variation and the immune response in natural populations of pocket gophers. Cons Biol 10:1519–1527

    Article  Google Scholar 

  • Sato A, Figueroa, F, Mayer WE, Grant PR, Grant R, Klein J (2000) MHC class II genes of Darwin’s finches: divergence by point mutations and reciprocal recombination. In: Kasahara M (ed) Major histocompatibility complex: evolution, structure, and function. Springer, Tokyo Berlin Heidelberg, pp 518–541

  • Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J (2001) Evolution of Mhc class II B genes in Darwin’s finches and their closest relatives: birth of a new gene. Immunogenetics 53:792–801

    CAS  PubMed  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of a single-base changes. Proc Natl Acad Sci USA 86:232–236

    CAS  PubMed  Google Scholar 

  • Singh PB, Brown RE, Roser B (1987). MHC antigens in urine as olfactory recognition cues. Nature 327:161–164

    CAS  PubMed  Google Scholar 

  • Summers-Smith JD (1988) The sparrows, a study of the genus Passer. Poyser, Calton, pp 114–161

  • Takahata N, Satta Y, Klein J (1992) Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130:925–938

    CAS  PubMed  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170

    CAS  PubMed  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence for a minimal essential Mhc. Immunogenetics 52:92–100

    CAS  PubMed  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC class II B loci in pheasants and domestic chicken. Mol Biol Evol 16:479–490

    CAS  PubMed  Google Scholar 

  • Yamazaki K, Beauchamp GK, Kupniewski J, Bard J, Thomas L, Boyse EA (1988). Familial imprinting determines H-2 selective mating preferences. Science 240:1331–1332

    CAS  PubMed  Google Scholar 

  • Zelano B, Edwards SV (2002). An Mhc component to kin recognition and mate choice in birds: predictions, progress and prospects. Am Nat 160:S225–S237

    Article  Google Scholar 

  • Ziegler A, Gottfried D, Uchanska-Ziegler B (2002) Possible role for products of polymorphic MHC and linked olfactory receptor genes during selection processes in reproduction. Am J Rep Immunol 47:1–9

    Article  Google Scholar 

  • Zoorob R, Bernot A, Renoir DM, Choukri F, Auffray C (1993) Chicken major histocompatibility complex class II B genes: analysis of interallelic and interlocus sequence variance. Eur J Immunol 23:1139–1145

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Richardson, T. von Schantz and F. Depaulis for discussion and advice, J. Ewen for useful comments and R. Barbault (director of the Ecole Doctorale Diversité du Vivant) for financial help. This research was supported by grants from the CNRS to G.S. and R.Z. (ACI Jeunes Chercheurs to G.S. and the GDR 2155 ‘Ecologie Comportementale’ to G.S., O.C. and B.F.) and from the European Commission to R.Z. (KA5 RLRT-CT99-1591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Bonneaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonneaud, C., Sorci, G., Morin, V. et al. Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55, 855–865 (2004). https://doi.org/10.1007/s00251-004-0648-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0648-3

Keywords

Navigation