Skip to main content
Log in

Electroporative deformation of salt filled lipid vesicles

  • ARTICLE
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Membrane electroporation, vesicle shape deformation and aggregation of small, NaCl-filled lipid vesicles (of radius a = 50 nm) in DC electric fields was characterized using conductometric and turbidimetrical data. At pulse durations tE≤ 55 ± 5 ms the increase in the conductivity of the vesicle suspension is due to the field-induced efflux of electrolyte through membrane electropores. Membrane electroporation and Maxwell stress on the vesicle membrane lead to vesicle elongation concomitant with small volume reduction (up to 0.6% in an electric field of E = 1 MV m–1). At tE > 55 ± 5 ms, further increases in the conductivity and the optical density suggest electroaggregation and electrofusion of vesicles. The conductivity changes after the electric pulse termination reflect salt ion efflux through slowly resealing electropores. The analysis of the volume reduction kinetics yields the bending rigidity κ = (4.1 ± 0.3) ⋅ 10–20 J of the vesicle membrane. If the flow of Na+ and Cl ions from the vesicle interior is treated in terms of Hagen-Poiseuille's equation, the number of permeable electropores is N = 39 per vesicle with mean pore radius rp = 0.85 ± 0.05 nm at E = 1 MVm–1 and tE≤ 55 ± 5 ms. The turbidimetric and conductometric data suggest that small lipid vesicles (a ≤ 50 nm) are not associated with extensive membrane thermal undulations or superstructures. In particular with respect to membrane curvature, the vesicle results are suggestive for the design and optimization of electroporative delivery of drugs and genes to cell tissue at small field strengths (≤1 MVm–1) and large pulse durations (≤100 ms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 8 July 1997 / Accepted: 15 September 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakorin, S., Redeker, E. & Neumann, E. Electroporative deformation of salt filled lipid vesicles. Eur Biophys J 27, 43–53 (1998). https://doi.org/10.1007/s002490050109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002490050109

Navigation