Skip to main content
Log in

Effect of aqueous ethanol on the triple helical structure of collagen

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Collagen, the most abundant protein in mammals, is widely used for making biomaterials. Recently, organic solvents have been used to fabricate collagen-based biomaterials for biological applications. It is therefore necessary to understand the behavior of collagen in the presence of organic solvents at low (≤50 %, v/v) and high (≥90 %, v/v) concentrations. This study was conducted to examine how collagen reacts when exposed to low and high concentrations of ethanol, one of the solvents used to make collagen-based biomaterials. Solubility testing indicated that collagen remains in solution at low concentrations (≤50 %, v/v) of ethanol but precipitates (gel-like) thereafter, irrespective of the method of addition of ethanol (single shot or gradual addition); this behavior is different from that observed recently with acetonitrile. Collagen retains its triple helix in the presence of ethanol but becomes thermodynamically unstable, with substantially reduced melting temperature, with increasing concentration of ethanol. It was also found that the CD ellipticity at 222 nm, characteristic of the triple-helical structure, does not correlate with the thermal stability of collagen. Time-dependent experiments reveal that the collagen triple helix is kinetically stable in the presence of 0–40 % (v/v) ethanol at low temperature (5 °C) but highly unstable in the presence of ethanol at elevated temperature (~34 °C). These results indicate that when ethanol is used to process collagen-based biomaterials, such factors as temperature and duration should be done taking into account, to prevent extensive damage to the triple-helical structure of collagen .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balasubramanian P, Prabhakaran MP, Sireesha M, Ramakrishna S (2013) Collagen in human tissues: structure, function, and biomedical implications from a tissue engineering perspective. Adv Polym Sci 251:173–206

  • Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL (2007) Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 13:1593–1605

    Article  CAS  PubMed  Google Scholar 

  • Bochicchio B, Tamburro AM (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14:782–792

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Davison PF (1981) Influence of the telopeptides on type-I collagen fibrillogenesis. Biopolymers 20:2195–2202

    Article  CAS  PubMed  Google Scholar 

  • Brodsky B, Ramshaw JAM (1997) The collagen triple-helix structure. Mat Biol 15:545–554

    Article  CAS  Google Scholar 

  • Chandrakasan G, Torchia DA, Piez KA (1976) Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J Biol Chem 251:6062–6067

    CAS  PubMed  Google Scholar 

  • Chen YS, Chen CC, Horng JC (2011) Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers 96:60–68

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Meyer JD, Kendrick BS, Manning MC, Carpenter JF (1996) Effect of secondary structure on the activity of enzymes suspended in organic solvents. Arch Biochem Biophys 334:406–414

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Macrae TP, Suzuki E (1979) Chain conformation in the collagen molecule. J Mol Biol 129:463–481

    Article  CAS  PubMed  Google Scholar 

  • Gelman RA, Williams BR, Piez KA (1979) Collagen fibril formation—evidence for a multistep process. J Biol Chem 254:180–186

    CAS  PubMed  Google Scholar 

  • Gingras M, Paradis I, Berthod F (2003) Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 24:1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Grant CA, Brockwell DJ, Radford SE, Thomson HN (2009) Tuning the elastic modulus of hydrated collagen fibrils. Biophys J 97:2985–2992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang BX, Kim HY (2012) Effects of ethanol on conformational changes of Akt studied by chemical cross-linking, mass spectrometry, and (18)O labeling. ACS Chem Biol 7:387–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang Q, Reddy N, Zhang S, Roscioli N, Yang Y (2013) Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J Biomed Mater Res A 101:1237–1247

    Article  PubMed  Google Scholar 

  • Kar K, Ibrar S, Nanda V, Getz TM, Kunapuli SP, Brodsky B (2009) Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48:7959–7968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kundu S, Sundd M, Jagannadham MV (2002) Alcohol and temperature induced conformational transitions in ervatamin B: sequential unfolding of domains. J Biochem Mol Biol 35:155–164

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Wu CW, Liang RC (1995) Effect of ethanol on the protein secondary structure of the human gastric mucosa, in vitro. Eur J Clin Chem Clin Biochem 33:255–261

    CAS  PubMed  Google Scholar 

  • Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841

    Article  CAS  PubMed  Google Scholar 

  • Manavalan P, Johnson WCJ (1983) Sensitivity of circular dichroism to protein tertiary structure class. Nature 305:831–832

    Article  CAS  Google Scholar 

  • Natarajan V, Krithica N, Madhan B, Sehgal PK (2013) Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res B Appl Biomater 101:560–567

    Article  PubMed  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  CAS  Google Scholar 

  • Penkova R, Goshev I, Gorinstein S, Nedkov P (1999) Stabilizing effect of glycerol on collagen type I isolated from different species. Food Chem 66:483–487

  • Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  CAS  PubMed  Google Scholar 

  • Ramshaw JAM, Shah NK, Brodsky B (1998) Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol 122:86–91

    Article  CAS  PubMed  Google Scholar 

  • Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA (2009) Collagens as biomaterials. J Mater Sci-Mater Med 20:S3–S8

    Article  CAS  PubMed  Google Scholar 

  • Sasahara K, Nitta K (2006) Effect of ethanol on folding of hen egg-white lysozyme under acidic condition. Proteins 63:127–135

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam G, Polavarapu PL (2009) Structural transition during thermal denaturation of collagen in the solution and film states. Chirality 21:152–159

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam G, Reddy SMM, Natarajan V, Madhan B (2013) 2,2,2-Trifluoroethanol disrupts the triple-helical structure and self-association of type I collagen. Int J Biol Macromol 54:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam G, Reddy SMM, Madhan B, Rao JR (2014) Method of addition of acetonitrile influences the structure and stability of collagen. Process Biochem 49:210–216

    Article  CAS  Google Scholar 

  • Singh HP, Shetty DC, Wadhwan V, Aggarwal P (2012) A quantitative and qualitative comparative analysis of collagen fibers to determine the role of connective tissue stroma on biological behavior of odontogenic cysts: a histochemical study. Natl J Maxillofac Surg 3:15–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Tiffany ML, Krimm S (1972) Effect of Temperature on the Circular Dichroism Spectra of Polypeptides in the Extended State. Biopolymers 11:2309–2316

    Article  CAS  PubMed  Google Scholar 

  • Usha R, Maheshwari R, Dhathathreyan A, Ramasami T (2006) Structural influence of mono and polyhydric alcohols on the stabilization of collagen. Coll Surf B Biointerfaces 48:101–105

    Article  CAS  Google Scholar 

  • Veis A (1982) Collagen fibrillogenesis. Connect Tissue Res 10:11–24

    Article  CAS  PubMed  Google Scholar 

  • Venugopal MG, Amshaw JA, Braswell E, Zhu D, Brodsky B (1994) Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 33:7948–7956

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Hirano A, Arakawa T, Shiraki K (2012) Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. Int J Biol Macromol 50:1286–1291

    Article  CAS  PubMed  Google Scholar 

  • Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL (2007) Development of a novel collagen–GAG nanofibrous scaffold via electrospinning. Mat Sci Engi C 27:262–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CSIR under a XII five-year-plan project (RIWT-CSC 0202, CSIR-CLRI communication no. 1051). One of the authors, S.M.M.R, thanks Council of Scientific and Industrial Research (CSIR), India, for financial support as a Junior Research Fellowship (JRF).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balaraman Madhan or Ganesh Shanmguam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, A., Reddy, S.M.M., Madhan, B. et al. Effect of aqueous ethanol on the triple helical structure of collagen. Eur Biophys J 43, 643–652 (2014). https://doi.org/10.1007/s00249-014-0994-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0994-5

Keywords

Navigation