Skip to main content
Log in

Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Modelin-5-CONH2, a synthetic antimicrobial peptide, was used to gain an insight into species-selective haemolytic activity. The peptide displayed limited haemolytic activity against sheep (12 %), human (2 %), and pig (2 %) erythrocytes. Our results show that Modelin-5-CONH2 had a disordered structure in the presence of vesicles formed from sheep, human, and pig erythrocyte lipid extract (<26 % helical) yet folded to form helices in the presence of a phosphatidylcholine (PC) membrane interface (e.g. >42 % in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine). Monolayer studies showed a strong correlation between anionic lipid content and monolayer insertion and lysis inducing surface pressure changes of 9.17 mN m−1 for 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine compared with PC monolayers, which induced pressure changes of ca. 3 mN m−1. The presence of cholesterol in the membrane is shown to increase the packing density as the PC:sphingomyelin (SM) ratio increases so preventing the peptide from forming a stable association with the membrane. The data suggests that the key driver for membrane interaction for Modelin-5-CONH2 is the anionic lipid attraction. However, the key factors in the species-specific haemolysis level for this peptide are the differing packing densities which are influenced by the SM:PC:cholesterol ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaral L, Engi H, Viveiros M, Molnar J (2007) Review. Comparison of multidrug resistant efflux pumps of cancer and bacterial cells with respect to the same inhibitory agents. In Vivo 21(2):237–244

    CAS  PubMed  Google Scholar 

  • Belokoneva OS, Villegas E, Corzo G, Dai L, Nakajima T (2003) The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers. Biochim Biophys Acta 1617(1–2):22–30. pii: S000527360300261X

  • Bessalle R, Gorea A, Shalit I, Metzger JW, Dass C, Desiderio DM, Fridkin M (1993) Structure–function studies of amphiphilic antibacterial peptides. J Med Chem 36(9):1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Bischoff KM, White DG, McDermott PF, Zhao S, Gaines S, Maurer JJ, Nisbet DJ (2002) Characterization of chloramphenicol resistance in beta-hemolytic Escherichia coli associated with diarrhea in neonatal swine. J Clin Microbiol 40(2):389–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi:10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  • Courvalin P (2005) Antimicrobial drug resistance: “prediction is very difficult, especially about the future”. Emerg Infect Dis 11:1503–1506

    Article  CAS  PubMed Central  Google Scholar 

  • Davies JT, Rideal EK (1963) Interfacial phenomena, 2nd edn. Academic Press, New York

    Google Scholar 

  • Demel RA (1974) Monolayers—description of use and interaction. Methods Enzymol 32(Part B):539–544

    Article  CAS  PubMed  Google Scholar 

  • Dennison SR, Harris F, Phoenix DA (2007) The interactions of aurein 1.2 with cancer cell membranes. Biophys Chem 127(1–2):78–83

    Article  CAS  PubMed  Google Scholar 

  • Dennison SR, Phoenix DA (2011a) Effect of cholesterol on the membrane interaction of modelin-5 isoforms. Biochemistry 50(50):10898–10909. doi:10.1021/bi201267v

    Article  CAS  PubMed  Google Scholar 

  • Dennison SR, Phoenix DA (2011b) Influence of C-terminal amidation on the efficacy of modelin-5. Biochemistry 50(9):1514–1523. doi:10.1021/bi101687t

    Article  CAS  PubMed  Google Scholar 

  • Epand RM (1997) Modulation of lipid polymorphism by peptides. In: Epand RF (ed) Lipid polymorphism and membrane properties. Academic Press, San Diego, pp 237–252

    Chapter  Google Scholar 

  • Forood B, Feliciano EJ, Nambiar KP (1993) Stabilization of alpha-helical structures in short peptides via end capping. Proc Natl Acad Sci USA 90(3):838–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55(1):31–49

    Article  CAS  PubMed  Google Scholar 

  • Gilmore A (1986) Chloramphenicol and the politics of health. CMAJ 134(4):423, 426–428, 433–425

  • Gracia RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R (2010) Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6(7):1472–1482. doi:10.1039/b920629a

    Article  CAS  Google Scholar 

  • Henzler Wildman KA, Lee DK, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42(21):6545–6558. doi:10.1021/bi0273563

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka Y, Pham DS, Waring AJ, Lehrer RI, Lee KYC (2006) Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: effect of head group electrostatics and tail group packing. Biochim Biophys Acta 1758(9):1450–1460

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li XM, Momsen MM, Smaby JM, Brockman HL, Brown RE (2001) Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Biochemistry 40(20):5954–5963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohner K, Prenner EJ (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta 1462(1–2):141–156

    Article  CAS  PubMed  Google Scholar 

  • Lowe PJ, Coleman R (1981) Membrane fluidity and bile salt damage. Biochim Biophys Acta 640(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Martínez D, Otero A, Alvarez C, Pazos F, Tejuca M, Eliana Lanio M, Gutiérrez-Aguirre I, Barlic A, Iloro I, Luis Arrondo J, González-Mañas JM, Lissi E (2007) Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon 49(1):68–81

    Article  PubMed  Google Scholar 

  • Michalova E, Novotna P, Schlegelova J (2004) Tetracyclines in veterinary medicine and bacterial resistance to them. Vet Med Czech 49(3):79–100

    CAS  Google Scholar 

  • Nelson GJ (1967) Composition of neutral lipids from erythrocytes of common mammals. J Lipid Res 8(4):374–379

    CAS  PubMed  Google Scholar 

  • Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm KS, Kim Y (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1–8)-magainin 2(1–12) and its analogues, on their antibiotic activities and structures. Biochemistry 39(39):11855–11864. pii: bi000453g

  • Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides. Wiley-VCH, New York

    Book  Google Scholar 

  • Rice L, Wainwright M, Phoenix DA (2000) Phenothiazine photosensitizers. III. Activity of methylene blue derivatives against pigmented melanoma cell lines. J Chemother 12(1):94–104

    CAS  PubMed  Google Scholar 

  • Salvioli G, Gaetti E, Panini R, Lugli R, Pradelli JM (1993) Different resistance of mammalian red blood cells to hemolysis by bile salts. Lipids 28(11):999–1003

    Article  CAS  PubMed  Google Scholar 

  • Seeling A (1987) Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers. Biochim Biophys Acta 899:196–204

    Article  Google Scholar 

  • Settepani JA (1984) The hazard of using chloramphenicol in food animals. J Am Vet Med Assoc 184(8):930–931

    CAS  PubMed  Google Scholar 

  • Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44(36):12094–12106. doi:10.1021/bi050765p

    Article  CAS  PubMed  Google Scholar 

  • Sood R, Domanov Y, Pietiainen M, Kontinen VP, Kinnunen PK (2008) Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. Biochim Biophys Acta 1778(4):983–996. doi:10.1016/j.bbamem.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  • Todd J (1963) Introduction to the constructive theory of functions. Academic Press, New York

    Google Scholar 

  • Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454

    Article  CAS  PubMed  Google Scholar 

  • Wainwright M (2000) Methylene blue derivatives—suitable photoantimicrobials for blood product disinfection? Int J Antimicrob Agents 16(4):381–394. pii: S0924857900002077

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Guo L, Ding JL, Ho B, Feng SS, Popplewell J, Swann M, Wohland T (2009) Interaction of an artificial antimicrobial peptide with lipid membranes. Biochim Biophys Acta 1788(2):333–344. doi:10.1016/j.bbamem.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  • Zhu WL, Nan YH, Hahm KS, Shin SY (2007) Cell selectivity of an antimicrobial peptide melittin diastereomer with d-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Phoenix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennison, S.R., Phoenix, D.A. Susceptibility of sheep, human, and pig erythrocytes to haemolysis by the antimicrobial peptide Modelin 5. Eur Biophys J 43, 423–432 (2014). https://doi.org/10.1007/s00249-014-0974-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0974-9

Keywords

Navigation